323 research outputs found

    An improved optimization technique for estimation of solar photovoltaic parameters

    Get PDF
    The nonlinear current vs voltage (I-V) characteristics of solar PV make its modelling difficult. Optimization techniques are the best tool for identifying the parameters of nonlinear models. Even though, there are different optimization techniques used for parameter estimation of solar PV, still the best optimized results are not achieved to date. In this paper, Wind Driven Optimization (WDO) technique is proposed as the new method for identifying the parameters of solar PV. The accuracy and convergence time of the proposed method is compared with results of Pattern Search (PS), Genetic Algorithm (GA), and Simulated Annealing (SA) for single diode and double diode models of solar PV. Furthermore, for performance validation, the parameters obtained through WDO are compared with hybrid Bee Pollinator Flower Pollination Algorithm (BPFPA), Flower Pollination Algorithm (FPA), Generalized Oppositional Teaching Learning Based Optimization (GOTLBO), Artificial Bee Swarm Optimization (ABSO), and Harmony Search (HS). The obtained results clearly reveal that WDO algorithm can provide accurate optimized values with less number of iterations at different environmental conditions. Therefore, the WDO can be recommended as the best optimization algorithm for parameter estimation of solar PV

    Cuckoo Search Inspired Hybridization of the Nelder-Mead Simplex Algorithm Applied to Optimization of Photovoltaic Cells

    Full text link
    A new hybridization of the Cuckoo Search (CS) is developed and applied to optimize multi-cell solar systems; namely multi-junction and split spectrum cells. The new approach consists of combining the CS with the Nelder-Mead method. More precisely, instead of using single solutions as nests for the CS, we use the concept of a simplex which is used in the Nelder-Mead algorithm. This makes it possible to use the flip operation introduces in the Nelder-Mead algorithm instead of the Levy flight which is a standard part of the CS. In this way, the hybridized algorithm becomes more robust and less sensitive to parameter tuning which exists in CS. The goal of our work was to optimize the performance of multi-cell solar systems. Although the underlying problem consists of the minimization of a function of a relatively small number of parameters, the difficulty comes from the fact that the evaluation of the function is complex and only a small number of evaluations is possible. In our test, we show that the new method has a better performance when compared to similar but more compex hybridizations of Nelder-Mead algorithm using genetic algorithms or particle swarm optimization on standard benchmark functions. Finally, we show that the new method outperforms some standard meta-heuristics for the problem of interest

    Photovoltaic parameters estimation of poly-crystalline and mono-crystalline modules using an improved population dynamic differential evolution algorithm

    Get PDF
    Photovoltaic (PV) parameters estimation from the experimental current and voltage data of PV modules is vital for monitoring and evaluating the performance of PV power generation systems. Moreover, the PV parameters can be used to predict current-voltage (I-V) behavior to control the power output of the PV modules. This paper aimed to propose an improved differential evolution (DE) integrated with a dynamic population sizing strategy to estimate the PV module model parameters accurately. This study used two popular PV module technologies, i.e., poly-crystalline and mono-crystalline. The optimized PV parameters were validated with the measured data and compared with other recent meta-heuristic algorithms. The proposed population dynamic differential evolution (PDDE) algorithm demonstrated high accuracy in estimating PV parameters and provided perfect approximations of the measured I-V and power-voltage (P-V) data from real PV modules. The PDDE obtained the best and the mean RMSE value of 2.4251E-03 on the poly-crystalline Photowatt-PWP201, while the best and the mean RMSE value on the mono-crystalline STM6-40/36 was 1.7298E-03. The PDDE algorithm showed outstanding accuracy performance and was competitive with the conventional DE and the existing algorithms in the literature

    Identification study of solar cell/module using recent optimization techniques

    Get PDF
    This paper proposes the application of a novel metaphor-free population optimization based on the mathematics of the Runge Kutta method (RUN) for parameter extraction of a double-diode model of the unknown solar cell and photovoltaic (PV) module parameters. The RUN optimizer is employed to determine the seven unknown parameters of the two-diode model. Fitting the experimental data is the main objective of the extracted unknown parameters to develop a generic PV model. Consequently, the root means squared error (RMSE) between the measured and estimated data is considered as the primary objective function. The suggested objective function achieves the closeness degree between the estimated and experimental data. For getting the generic model, applications of the proposed RUN are carried out on two different commercial PV cells. To assess the proposed algorithm, a comprehensive comparison study is employed and compared with several well-matured optimization algorithms reported in the literature. Numerical simulations prove the high precision and fast response of the proposed RUN algorithm for solving multiple PV models. Added to that, the RUN can be considered as a good alternative optimization method for solving power systems optimization problems

    A Brief Review of Cuckoo Search Algorithm (CSA) Research Progression from 2010 to 2013

    Get PDF
    Cuckoo Search Algorithm is a new swarm intelligence algorithm which based on breeding behavior of the Cuckoo bird. This paper gives a brief insight of the advancement of the Cuckoo Search Algorithm from 2010 to 2013. The first half of this paper presents the publication trend of Cuckoo Search Algorithm. The remaining of this paper briefly explains the contribution of the individual publication related to Cuckoo Search Algorithm. It is believed that this paper will greatly benefit the reader who needs a bird-eyes view of the Cuckoo Search Algorithm’s publications trend

    Maximum Power Point Tracking Algorithm for Advanced Photovoltaic Systems

    Get PDF
    Photovoltaic (PV) systems are the major nonconventional sources for power generation for present power strategy. The power of PV system has rapid increase because of its unpolluted, less noise and limited maintenance. But whole PV system has two main disadvantages drawbacks, that is, the power generation of it is quite low and the output power is nonlinear, which is influenced by climatic conditions, namely environmental temperature and the solar irradiation. The natural limiting factor is that PV potential in respect of temperature and irradiation has nonlinear output behavior. An automated power tracking method, for example, maximum power point tracking (MPPT), is necessarily applied to improve the power generation of PV systems. The MPPT methods undergo serious challenges when the PV system is under partial shade condition because PV shows several peaks in power. Hence, the exploration method might easily be misguided and might trapped to the local maxima. Therefore, a reasonable exploratory method must be constructed, which has to determine the global maxima for PV of shaded partially. The traditional approaches namely constant voltage tracking (CVT), perturb and observe (P&O), hill climbing (HC), Incremental Conductance (INC), and fractional open circuit voltage (FOCV) methods, indeed some of their improved types, are quite incompetent in tracking the global MPP (GMPP). Traditional techniques and soft computing-based bio-inspired and nature-inspired algorithms applied to MPPT were reviewed to explore the possibility for research while optimizing the PV system with global maximum output power under partially shading conditions. This paper is aimed to review, compare, and analyze almost all the techniques that implemented so far. Further this paper provides adequate details about algorithms that focuses to derive improved MPPT under non-uniform irradiation. Each algorithm got merits and demerits of its own with respect to the converging speed, computing time, complexity of coding, hardware suitability, stability and so on

    Performance Analysis Of Hybrid Ai-Based Technique For Maximum Power Point Tracking In Solar Energy System Applications

    Get PDF
    Demand is increasing for a system based on renewable energy sources that can be employed to both fulfill rising electricity needs and mitigate climate change. Solar energy is the most prominent renewable energy option. However, only 30%-40% of the solar irradiance or sunlight intensity is converted into electrical energy by the solar panel system, which is low compared to other sources. This is because the solar power system\u27s output curve for power versus voltage has just one Global Maximum Power Point (GMPP) and several local Maximum Power Points (MPPs). For a long time, substantial research in Artificial Intelligence (AI) has been undertaken to build algorithms that can track the MPP more efficiently to acquire the most output from a Photovoltaic (PV) panel system because traditional Maximum Power Point Tracking (MPPT) techniques such as Incremental Conductance (INC) and Perturb and Observe (P&Q) are unable to track the GMPP under varying weather conditions. Literature (K. Y. Yap et al., 2020) has shown that most AIbased MPPT algorithms have a faster convergence time, reduced steady-state oscillation, and higher efficiency but need a lot of processing and are expensive to implement. However, hybrid MPPT has been shown to have a good performance-to-complexity ratio. It incorporates the benefits of traditional and AI-based MPPT methodologies but choosing the appropriate hybrid MPPT techniques is still a challenge since each has advantages and disadvantages. In this research work, we proposed a suitable hybrid AI-based MPPT technique that exhibited the right balance between performance and complexity when utilizing AI in MPPT for solar power system optimization. To achieve this, we looked at the basic concept of maximum power point tracking and compared some AI-based MPPT algorithms for GMPP estimation. After evaluating and comparing these approaches, the most practical and effective ones were chosen, modeled, and simulated in MATLAB Simulink to demonstrate the method\u27s correctness and dependability in estimating GMPP under various solar irradiation and PV cell temperature values. The AI-based MPPT techniques evaluated include Particle Swarm Optimization (PSO) trained Adaptive Neural Fuzzy Inference System (ANFIS) and PSO trained Neural Network (NN) MPPT. We compared these methods with Genetic Algorithm (GA)-trained ANFIS method. Simulation results demonstrated that the investigated technique could track the GMPP of the PV system and has a faster convergence time and more excellent stability. Lastly, we investigated the suitability of Buck, Boost, and Buck-Boost converter topologies for hybrid AI-based MPPT in solar energy systems under varying solar irradiance and temperature conditions. The simulation results provided valuable insights into the efficiency and performance of the different converter topologies in solar energy systems employing hybrid AI-based MPPT techniques. The Boost converter was identified as the optimal topology based on the results, surpassing the Buck and Buck-Boost converters in terms of efficiency and performance. Keywords—Maximum Power Point Tracking (MPPT), Genetic Algorithm, Adaptive Neural-Fuzzy Interference System (ANFIS), Particle Swarm Optimization (PSO

    Identification of parameters in photovoltaic models through a runge kutta optimizer

    Get PDF
    Recently, the resources of renewable energy have been in intensive use due to their environmental and technical merits. The identification of unknown parameters in photovoltaic (PV) models is one of the main issues in simulation and modeling of renewable energy sources. Due to the random behavior of weather, the change in output current from a PV model is nonlinear. In this regard, a new optimization algorithm called Runge–Kutta optimizer (RUN) is applied for estimating the parameters of three PV models. The RUN algorithm is applied for the R.T.C France solar cell, as a case study. Moreover, the root mean square error (RMSE) between the calculated and measured current is used as the objective function for identifying solar cell parameters. The proposed RUN algorithm is superior compared with the Hunger Games Search (HGS) algorithm, the Chameleon Swarm Algorithm (CSA), the Tunicate Swarm Algorithm (TSA), Harris Hawk’s Optimization (HHO), the Sine–Cosine Algorithm (SCA) and the Grey Wolf Optimization (GWO) algorithm. Three solar cell models—single diode, double diode and triple diode solar cell models (SDSCM, DDSCM and TDSCM)—are applied to check the performance of the RUN algorithm to extract the parameters. the best RMSE from the RUN algorithm is 0.00098624, 0.00098717 and 0.000989133 for SDSCM, DDSCM and TDSCM, respectively

    Detection and Assessment of Partial Shading Scenarios on Photovoltaic Strings

    Get PDF

    Improving the efficiency of photovoltaic cells embedded in floating buoys

    Get PDF
    Solar cells are used to power floating buoys, which is one of their applications. Floating buoys are devices that are placed on the sea and ocean surfaces to provide various information to the floats. Because these cells are subjected to varying environmental conditions, modeling and simulating photovoltaic cells enables us to install cells with higher efficiency and performance in them. The parameters of the single diode model are examined in this article so that the I-V, P-V diagrams, and characteristics of the cadmium telluride (CdTe) photovoltaic cell designed with three layers (CdTe, CdS, and SnOx) can be extracted using A solar cell capacitance simulator (SCAPS) software, and we obtain the parameters of the single diode model using the ant colony optimization (ACO) algorithm. In this paper, the objective function is root mean square error (RMSE), and the best value obtained after 30 runs is 5.2217Ă—10-5 in 2.46 seconds per iteration, indicating a good agreement between the simulated model and the real model and outperforms many other algorithms that have been developed thus far. The above optimization with 200 iterations, a population of 30, and 84 points was completed on a server with 32 gigabytes of random-access memory (RAM) and 30 processing cores
    • …
    corecore