2,183 research outputs found

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Convergence Rate Analysis of Distributed Gossip (Linear Parameter) Estimation: Fundamental Limits and Tradeoffs

    Full text link
    The paper considers gossip distributed estimation of a (static) distributed random field (a.k.a., large scale unknown parameter vector) observed by sparsely interconnected sensors, each of which only observes a small fraction of the field. We consider linear distributed estimators whose structure combines the information \emph{flow} among sensors (the \emph{consensus} term resulting from the local gossiping exchange among sensors when they are able to communicate) and the information \emph{gathering} measured by the sensors (the \emph{sensing} or \emph{innovations} term.) This leads to mixed time scale algorithms--one time scale associated with the consensus and the other with the innovations. The paper establishes a distributed observability condition (global observability plus mean connectedness) under which the distributed estimates are consistent and asymptotically normal. We introduce the distributed notion equivalent to the (centralized) Fisher information rate, which is a bound on the mean square error reduction rate of any distributed estimator; we show that under the appropriate modeling and structural network communication conditions (gossip protocol) the distributed gossip estimator attains this distributed Fisher information rate, asymptotically achieving the performance of the optimal centralized estimator. Finally, we study the behavior of the distributed gossip estimator when the measurements fade (noise variance grows) with time; in particular, we consider the maximum rate at which the noise variance can grow and still the distributed estimator being consistent, by showing that, as long as the centralized estimator is consistent, the distributed estimator remains consistent.Comment: Submitted for publication, 30 page

    Cram\'er-Rao Bounds for Polynomial Signal Estimation using Sensors with AR(1) Drift

    Full text link
    We seek to characterize the estimation performance of a sensor network where the individual sensors exhibit the phenomenon of drift, i.e., a gradual change of the bias. Though estimation in the presence of random errors has been extensively studied in the literature, the loss of estimation performance due to systematic errors like drift have rarely been looked into. In this paper, we derive closed-form Fisher Information matrix and subsequently Cram\'er-Rao bounds (upto reasonable approximation) for the estimation accuracy of drift-corrupted signals. We assume a polynomial time-series as the representative signal and an autoregressive process model for the drift. When the Markov parameter for drift \rho<1, we show that the first-order effect of drift is asymptotically equivalent to scaling the measurement noise by an appropriate factor. For \rho=1, i.e., when the drift is non-stationary, we show that the constant part of a signal can only be estimated inconsistently (non-zero asymptotic variance). Practical usage of the results are demonstrated through the analysis of 1) networks with multiple sensors and 2) bandwidth limited networks communicating only quantized observations.Comment: 14 pages, 6 figures, This paper will appear in the Oct/Nov 2012 issue of IEEE Transactions on Signal Processin

    An Upper Bound to Zero-Delay Rate Distortion via Kalman Filtering for Vector Gaussian Sources

    Full text link
    We deal with zero-delay source coding of a vector Gaussian autoregressive (AR) source subject to an average mean squared error (MSE) fidelity criterion. Toward this end, we consider the nonanticipative rate distortion function (NRDF) which is a lower bound to the causal and zero-delay rate distortion function (RDF). We use the realization scheme with feedback proposed in [1] to model the corresponding optimal "test-channel" of the NRDF, when considering vector Gaussian AR(1) sources subject to an average MSE distortion. We give conditions on the vector Gaussian AR(1) source to ensure asymptotic stationarity of the realization scheme (bounded performance). Then, we encode the vector innovations due to Kalman filtering via lattice quantization with subtractive dither and memoryless entropy coding. This coding scheme provides a tight upper bound to the zero-delay Gaussian RDF. We extend this result to vector Gaussian AR sources of any finite order. Further, we show that for infinite dimensional vector Gaussian AR sources of any finite order, the NRDF coincides with the zero-delay RDF. Our theoretical framework is corroborated with a simulation example.Comment: 7 pages, 6 figures, accepted for publication in IEEE Information Theory Workshop (ITW
    • …
    corecore