87,239 research outputs found

    Calculation of LTC Premiums based on direct estimates of transition probabilities

    Get PDF
    In this paper we model the life-history of LTC patients using a Markovian multi-state model in order to calculate premiums for a given LTC-plan. Instead of estimating the transition intensities in this model we use the approach suggested by Andersen et al. (2003) for a direct estimation of the transition probabilities. Based on the Aalen-Johansen estimator, an almost unbiased estimator for the transition matrix of a Markovian multi-state model, we calculate so-called pseudo-values, known from Jackknife methods. Further, we assume that the relationship between these pseudo-values and the covariates of our data are given by a GLM with the logit as link-function. Since the GLMs do not allow for correlation between successive observations we use instead the "Generalized Estimating Equations" (GEEs) to estimate the parameters of our regression model. The approach is illustrated using a representative sample from a German LTC portfolio

    R Package multgee: A Generalized Estimating Equations Solver for Multinomial Responses

    Get PDF
    The R package multgee implements the local odds ratios generalized estimating equations (GEE) approach proposed by Touloumis et al. (2013), a GEE approach for correlated multinomial responses that circumvents theoretical and practical limitations of the GEE method. A main strength of multgee is that it provides GEE routines for both ordinal (ordLORgee) and nominal (nomLORgee) responses, while relevant softwares in R and SAS are restricted to ordinal responses under a marginal cumulative link model specification. In addition, multgee offers a marginal adjacent categories logit model for ordinal responses and a marginal baseline category logit model for nominal. Further, utility functions are available to ease the local odds ratios structure selection (intrinsic.pars) and to perform a Wald type goodness-of-fit test between two nested GEE models (waldts). We demonstrate the application of multgee through a clinical trial with clustered ordinal multinomial responses.Comment: To appear in Journal of Statistical Softwar

    On Stein's Identity and Near-Optimal Estimation in High-dimensional Index Models

    Full text link
    We consider estimating the parametric components of semi-parametric multiple index models in a high-dimensional and non-Gaussian setting. Such models form a rich class of non-linear models with applications to signal processing, machine learning and statistics. Our estimators leverage the score function based first and second-order Stein's identities and do not require the covariates to satisfy Gaussian or elliptical symmetry assumptions common in the literature. Moreover, to handle score functions and responses that are heavy-tailed, our estimators are constructed via carefully thresholding their empirical counterparts. We show that our estimator achieves near-optimal statistical rate of convergence in several settings. We supplement our theoretical results via simulation experiments that confirm the theory

    Applications of sensitivity analysis for probit stochastic network equilibrium

    Get PDF
    Network equilibrium models are widely used by traffic practitioners to aid them in making decisions concerning the operation and management of traffic networks. The common practice is to test a prescribed range of hypothetical changes or policy measures through adjustments to the input data, namely the trip demands, the arc performance (travel time) functions, and policy variables such as tolls or signal timings. Relatively little use is, however, made of the full implicit relationship between model inputs and outputs inherent in these models. By exploiting the representation of such models as an equivalent optimisation problem, classical results on the sensitivity analysis of non-linear programs may be applied, to produce linear relationships between input data perturbations and model outputs. We specifically focus on recent results relating to the probit Stochastic User Equilibrium (PSUE) model, which has the advantage of greater behavioural realism and flexibility relative to the conventional Wardrop user equilibrium and logit SUE models. The paper goes on to explore four applications of these sensitivity expressions in gaining insight into the operation of road traffic networks. These applications are namely: identification of sensitive, ‘critical’ parameters; computation of approximate, re-equilibrated solutions following a change (post-optimisation); robustness analysis of model forecasts to input data errors, in the form of confidence interval estimation; and the solution of problems of the bi-level, optimal network design variety. Finally, numerical experiments applying these methods are reported

    Designs for generalized linear models with random block effects via information matrix approximations

    No full text
    The selection of optimal designs for generalized linear mixed models is complicated by the fact that the Fisher information matrix, on which most optimality criteria depend, is computationally expensive to evaluate. Our focus is on the design of experiments for likelihood estimation of parameters in the conditional model. We provide two novel approximations that substantially reduce the computational cost of evaluating the information matrix by complete enumeration of response outcomes, or Monte Carlo approximations thereof: (i) an asymptotic approximation which is accurate when there is strong dependence between observations in the same block; (ii) an approximation via Kriging interpolators. For logistic random intercept models, we show how interpolation can be especially effective for finding pseudo-Bayesian designs that incorporate uncertainty in the values of the model parameters. The new results are used to provide the first evaluation of the efficiency, for estimating conditional models, of optimal designs from closed-form approximations to the information matrix derived from marginal models. It is found that correcting for the marginal attenuation of parameters in binary-response models yields much improved designs, typically with very high efficiencies. However, in some experiments exhibiting strong dependence, designs for marginal models may still be inefficient for conditional modelling. Our asymptotic results provide some theoretical insights into why such inefficiencies occur
    • …
    corecore