1,054 research outputs found

    Machine Learning based Signal Generation Strategies for High-Speed Optical Transmitters

    Get PDF
    Optical communication is the only viable solution to respond to the demand for a high bit rate and long transmission distance. Directly modulated lasers (DMLs) are a cheap solution for modulating the light in optical fibre. Moreover, their hardware is simpler than externally modulated lasers. However, DML is inherently chirped and the transmission length with high bit rate is limited. This work explores and implements neural networks based signal predistortion schemes to create transmitters

    Waveform libraries: Measures of effectiveness for radar scheduling

    Get PDF
    Our goal was to provide an overview of a circle of emerging ideas in the area of waveform scheduling for active radar. Principled scheduling of waveforms in radar and other active sensing modalities is motivated by the nonexistence of any single waveform that is ideal for all situations encountered in typical operational scenarios. This raises the possibility of achieving operationally significant performance gains through closed-loop waveform scheduling. In principle, the waveform transmitted in each epoch should be optimized with respect to a metric of desired performance using all information available from prior measurements in conjunction with models of scenario dynamics. In practice, the operational tempo of the system may preclude such on-the-fly waveform design, though further research into fast adaption of waveforms could possibly attenuate such obstacles in the future. The focus in this article has been on the use of predesigned libraries of waveforms from which the scheduler can select in lieu of undertaking a real-time design. Despite promising results, such as the performance gains shown in the tracking example presented here, many challenges remain to be addressed to bring the power of waveform scheduling to the level of maturity needed to manifest major impact as a standard component of civilian and military radar systems.Douglas Cochran, Sofia Suvorova, Stephen D. Howard and Bill Mora

    Fractal-based models for internet traffic and their application to secure data transmission

    Get PDF
    This thesis studies the application of fractal geometry to the application of covert communications systems. This involves the process of hiding information in background noise; the information being encrypted or otherwise. Models and methods are considered with regard to two communications systems: (i) wireless communications; (ii) internet communications. In practice, of course, communication through the Internet cannot be disassociated from wireless communications as Internet traffic is 'piped' through a network that can include wireless communications (e.g. satellite telecommunications). However, in terms of developing models and methods for covert communications in general, points (i) and (ii) above require different approaches and access to different technologies. With regard to (i) above, we develop two methods based on fractal modulation and multi-fractal modulation. With regard to (ii), we implement a practical method and associated software for covert transmission of file attachments based on an analysis of Internet traffic noise. In both cases, however, two fractal models are considered; the first is the standard Random Scaling Fractal model and the second is a generalisation of this model that incorporates a greater range of spectral properties than the first—a Generalised Random Scaling Fractal Model. [Continues.

    A satellite-based radar wind sensor

    Get PDF
    The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Chirp-based direct phase modulation of VCSELs managed by Neural Networks

    Get PDF
    VCSEL's capacity of direct modulation and its low cost makes this device a feasible cost-effective transmitter for ultra-dense wavelength division multiplexing (uDWDM) metro-access networks using coherent detection. However, performing direct-phase modulation in semiconductors can be complex due to its nonlinear characteristics. This research presents Neural Network (NN) training techniques for Time-Series analysis in order to describe the correlation between the input current given to the device and its output optical phase, using a 1550nm RayCan SM-VCSEL. Main goal is training a NN capable of predicting an ideal optical power signal for a specific phase result achievable by inverse training, that is: optical phase is the neural network input while the optical power is the desired target. The experiment is done in three stages: (i) VCSEL's characterization, (ii) NN training to predict input current knowing optical power, and (iii) NN training to predict optical power from a known optical phase

    Experimental studies of radiation reaction in strong fields with Bayesian inference and model selection

    Get PDF
    Radiation reaction is the recoil of a charge upon emitting radiation. This effect is expected to play a significant role in the dynamics of charges, particularly electrons, and the radiation they produce in strong-field environments. Of particular interest are environments in which the electric field strength approaches the Schwinger field, E_sch=(m_e^2 c^3)/eℏ=1.38×10^16 Vcm^-1 defined as the field strength which can induce electron-positron pair production from vacuum. Electric field strengths approaching the Schwinger field may be generated by astrophysical bodies, such as pulsars and quasars. In such environments, classical theories of radiation reaction are expected to break down. Thus, a quantum description of radiation reaction is needed to accurately model radiation generation and other related processes such as pair production in these environments. The subject of this thesis is an experiment, conducted at the Central Laser Facility in 2021, the aim of which was to measure radiation reaction. The experiment utilised an all-optical set-up in which an energetic electron beam (peak energy ≈1 GeV) generated by a wakefield accelerator collided with a tightly focussed, counter-propagating laser pulse. In this thesis, I introduce and discuss a Bayesian analysis procedure which I have developed. This allows the post-collision electron spectrum and the spectrum of gamma radiation emitted during the col- lision to be used to quantitatively compare different models of radiation reaction, whilst also retrieving information concerning the collision conditions which could not be measured during the experiment. We find evidence of radiation reaction to 8σ, the highest degree of significance of any all-optical experi- ment to date. Using the Bayesian framework, we find that a quantum model of radiation reaction is more consistent with the spectrum of emitted radiation and the electron energy loss measured experimentally than a classical or a semiclassical model.Open Acces

    Statistical signal processing for echo signals from ultrasound linear and nonlinear scatterers

    Get PDF
    corecore