12 research outputs found

    Parallelizing superFine

    Get PDF
    The estimation of the Tree of Life, a rooted binary tree representing how all extant species evolved from a common ancestor, is one of the grand challenges of modern biology. Research groups around the world are attempting to estimate evolutionary trees on particular sets of species (typically clades, or rooted subtrees), in the hope that a final "supertree" can be produced from these smaller estimated trees through the addition of a "scaffold" tree of randomly sampled taxa from the tree of life. However, supertree estimation is itself a computationally challenging problem, because the most accurate trees are produced by running heuristics for NP-hard problems. In this paper we report on a study in which we parallelize SuperFine, the currently most accurate and efficient supertree estimation method. We explore performance of these parallel implementations on simulated data-sets with 1000 taxa and biological data-sets with up to 2,228 taxa. Our study reveals aspects of SuperFine that limit the speed-ups that are possible through the type of outer-loop parallelism we exploit.(undefined

    Towards a faster and accurate supertree inference

    Get PDF
    Phylogenetic inference is one of the most challenging and important problems in computational biology. However, computing evolutionary links on data sets containing only few thousands of taxa easily becomes a daunting task. Moreover, recent advances in next-generation sequencing technologies are turning this problem even much harder, either in terms of complexity or scale. Therefore, phylogenetic inference requires new algorithms and methods to handle the unprecedented growth of biological data. In this paper, we identify several types of parallelism that are available while refining a supertree. We also present four improvements that we made to SuperFine-a state-of-The-Art supertree (meta)method-, which add support: i) to use FastTree as the inference tool; ii) to use a parallel version of FastTree, or RAxML, as the inference tool; iii) to exploit intra-polytomy parallelism within the so-called polytomy refinement phase; and iv) to exploit, at the same time, inter-polytomy and intra-polytomy parallelism within the polytomy refinement phase. Together, these improvements allow an efficient and transparent exploitation of hybrid-polytomy parallelism. Additionally, we pinpoint how future contributions should enhance the performance of such applications. Our studies show groundbreaking results in terms of the achieved speedups, specially when using biological data sets. Moreover, we show that the new parallel strategy-which exploits the hybrid-polytomy parallelism within the polytomy refinement phase-exhibits good scalability, even in the presence of asymmetric sets of tasks. Furthermore, the achieved results show that the radical improvement in performance does not impair tree accuracy, which is a key issue in phylogenetic inferences.This research was partially supported by Fundação para a Ciência e aTecnologia (grant SFRH/BD/42634/2007). We thank Rui Gonc¸alves, Rui Silva, and Tandy Warnow for fruitful discussions and valuable feedback. We thank Keshav Pingali for his valuable support and sponsorship to let us execute jobs on TACC machines. We are deeply grateful to Rui Oliveira, without whom it would not be possible to present this work. We are very grateful to the anonymous reviewers for the evaluation of our paper and for the constructive critics.info:eu-repo/semantics/publishedVersio

    MRL and SuperFine+MRL: new supertree methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supertree methods combine trees on subsets of the full taxon set together to produce a tree on the entire set of taxa. Of the many supertree methods, the most popular is MRP (Matrix Representation with Parsimony), a method that operates by first encoding the input set of source trees by a large matrix (the "MRP matrix") over {0,1, ?}, and then running maximum parsimony heuristics on the MRP matrix. Experimental studies evaluating MRP in comparison to other supertree methods have established that for large datasets, MRP generally produces trees of equal or greater accuracy than other methods, and can run on larger datasets. A recent development in supertree methods is SuperFine+MRP, a method that combines MRP with a divide-and-conquer approach, and produces more accurate trees in less time than MRP. In this paper we consider a new approach for supertree estimation, called MRL (Matrix Representation with Likelihood). MRL begins with the same MRP matrix, but then analyzes the MRP matrix using heuristics (such as RAxML) for 2-state Maximum Likelihood.</p> <p>Results</p> <p>We compared MRP and SuperFine+MRP with MRL and SuperFine+MRL on simulated and biological datasets. We examined the MRP and MRL scores of each method on a wide range of datasets, as well as the resulting topological accuracy of the trees. Our experimental results show that MRL, coupled with a very good ML heuristic such as RAxML, produced more accurate trees than MRP, and MRL scores were more strongly correlated with topological accuracy than MRP scores.</p> <p>Conclusions</p> <p>SuperFine+MRP, when based upon a good MP heuristic, such as TNT, produces among the best scores for both MRP and MRL, and is generally faster and more topologically accurate than other supertree methods we tested.</p

    Edge Ratchet and Simulated Annealing to Improve RF Score of the Supertree of Life

    Get PDF
    Constructing the Supertree of Life can provide crucially valuable knowledge to address many critical contemporary challenges such as fighting diseases, improving global agriculture, and protecting ecosystems to name a few. However, building such a tree is among the most complicated and challenging scientific problems. In the case of biological data, the true species tree is not available. Hence, the accuracy of the supertree is usually evaluated based on its similarity to the given source input trees. In this work, we aim at improving the accuracy of the supertree in terms of its cumulative Robinson Foulds (RF) distance to the source trees. This problem is NP-hard. Therefore, we have to resort to heuristic algorithms. We have two main contributions in this work. First, we propose a new technique, Edge Ratchet, which is used in a hill-climbing based algorithm to deal with local optimum problem. Second, we develop a Simulated Annealing algorithm to minimize total RF distance of the supertree to the source trees. Our results demonstrate that these two algorithms are able to improve the accuracy of the best existing supertree algorithms with regard to RF distance

    Edge Ratchet and Simulated Annealing to Improve RF Score of the Supertree of Life

    Get PDF
    Constructing the Supertree of Life can provide crucially valuable knowledge to address many critical contemporary challenges such as fighting diseases, improving global agriculture, and protecting ecosystems to name a few. However, building such a tree is among the most complicated and challenging scientific problems. In the case of biological data, the true species tree is not available. Hence, the accuracy of the supertree is usually evaluated based on its similarity to the given source input trees. In this work, we aim at improving the accuracy of the supertree in terms of its cumulative Robinson Foulds (RF) distance to the source trees. This problem is NP-hard. Therefore, we have to resort to heuristic algorithms. We have two main contributions in this work. First, we propose a new technique, Edge Ratchet, which is used in a hill-climbing based algorithm to deal with local optimum problem. Second, we develop a Simulated Annealing algorithm to minimize total RF distance of the supertree to the source trees. Our results demonstrate that these two algorithms are able to improve the accuracy of the best existing supertree algorithms with regard to RF distance

    Molecular phylogenetic analysis: design and implementation of scalable and reliable algorithms and verification of phylogenetic properties

    Get PDF
    El término bioinformática tiene muchas acepciones, una gran parte referentes a la bioinformática molecular: el conjunto de métodos matemáticos, estadísticos y computacionales que tienen como objetivo dar solución a problemas biológicos, haciendo uso exclusivamente de las secuencias de ADN, ARN y proteínas y su información asociada. La filogenética es el área de la bioinformática encargada del estudio de la relación evolutiva entre organismos de la misma o distintas especies. Al igual que sucedía con la definición anterior, los trabajos realizados a lo largo de esta tesis se centran en la filogenética molecular: la rama de la filogenética que analiza las mutaciones hereditarias en secuencias biológicas (principalmente ADN) para establecer dicha relación evolutiva. El resultado de este análisis se plasma en un árbol evolutivo o filogenia. Una filogenia suele representarse como un árbol con raíz, normalmente binario, en el que las hojas simbolizan los organismos existentes actualmente y, la raíz, su ancestro común. Cada nodo interno representa una mutación que ha dado lugar a una división en la clasificación de los descendientes. Las filogenias se construyen mediante procesos de inferencia en base a la información disponible, que pertenece mayoritariamente a organismos existentes hoy en día. La complejidad de este problema se ha visto reflejada en la clasificación de la mayoría de métodos propuestos para su solución como NP-duros [1-3].El caso real de aplicación de esta tesis ha sido el ADN mitocondrial. Este tipo de secuencias biológicas es relevante debido a que tiene un alto índice de mutación, por lo que incluso filogenias de organismos muy cercanos evolutivamente proporcionan datos significativos para la comunidad biológica. Además, varias mutaciones del ADN mitocondrial humano se han relacionado directamente con enfermedad y patogenias, la mayoría mortales en individuos no natos o de corta edad. En la actualidad hay más de 30000 secuencias disponibles de ADN mitocondrial humano, lo que, además de su utilidad científica, ha permitido el análisis de rendimiento de nuestras contribuciones para datos masivos (Big Data). La reciente incorporación de la bioinformática en la categoría Big Data viene respaldada por la mejora de las técnicas de digitalización de secuencias biológicas que sucedió a principios del siglo 21 [4]. Este cambio aumentó drásticamente el número de secuencias disponibles. Por ejemplo, el número de secuencias de ADN mitocondrial humano pasó de duplicarse cada cuatro años, a hacerlo en menos de dos. Por ello, un gran número de métodos y herramientas usados hasta entonces han quedado obsoletos al no ser capaces de procesar eficientemente estos nuevos volúmenes de datos.Este es motivo por el que todas las aportaciones de esta tesis han sido desarrolladas para poder tratar grandes volúmenes de datos. La contribución principal de esta tesis es un framework que permite diseñar y ejecutar automáticamente flujos de trabajo para la inferencia filogenética: PhyloFlow [5-7]. Su creación fue promovida por el hecho de que la mayoría de sistemas de inferencia filogenética existentes tienen un flujo de trabajo fijo y no se pueden modificar ni las herramientas software que los componen ni sus parámetros. Esta decisión puede afectar negativamente a la precisión del resultado si el flujo del sistema o alguno de sus componentes no está adaptado a la información biológica que se va a utilizar como entrada. Por ello, PhyloFlow incorpora un proceso de configuración que permite seleccionar tanto cada uno de los procesos que formarán parte del sistema final, como las herramientas y métodos específicos y sus parámetros. Se han incluido consejos y opciones por defecto durante el proceso de configuración para facilitar su uso, sobre todo a usuarios nóveles. Además, nuestro framework permite la ejecución desatendida de los sistemas filogenéticos generados, tanto en ordenadores de sobremesa como en plataformas hardware (clusters, computación en la nube, etc.). Finalmente, se han evaluado las capacidades de PhyloFlow tanto en la reproducción de sistemas de inferencia filogenética publicados anteriormente como en la creación de sistemas orientados a problemas intensivos como el de inferencia del ADN mitocondrial humano. Los resultados muestran que nuestro framework no solo es capaz de realizar los retos planteados, sino que, en el caso de la replicación de sistemas, la posibilidad de configurar cada elemento que los componen mejora ampliamente su aplicabilidad.Durante la implementación de PhyloFlow descubrimos varias carencias importantes en algunas bibliotecas software actuales que dificultaron la integración y gestión de las herramientas filogenéticas. Por este motivo se decidió crear la primera biblioteca software en Python para estudios de filogenética molecular: MEvoLib [8]. Esta biblioteca ha sido diseñada para proveer una sola interfaz para los conjuntos de herramientas software orientados al mismo proceso, como el multialineamiento o la inferencia de filogenias. MEvoLib incluye además configuraciones por defecto y métodos que hacen uso de conocimiento biológico específico para mejorar su precisión, adaptándose a las necesidades de cada tipo de usuario. Como última característica relevante, se ha incorporado un proceso de conversión de formatos para los ficheros de entrada y salida de cada interfaz, de forma que, si la herramienta seleccionada no soporta dicho formato, este es adaptado automáticamente. Esta propiedad facilita el uso e integración de MEvoLib en scripts y herramientas software.El estudio del caso de aplicación de PhyloFlow al ADN mitocondrial humano ha expuesto los elevados costes tanto computacionales como económicos asociados a la inferencia de grandes filogenias. Por ello, sistemas como PhyloTree [9], que infiere un tipo especial de filogenias de ADN mitocondrial humano, recalculan sus resultados con una frecuencia máxima anual. Sin embargo, como ya hemos comentado anteriormente, las técnicas de secuenciación actuales permiten la incorporación de cientos o incluso miles de secuencias biológicas nuevas cada mes. Este desfase entre productor y consumidor hace que dichas filogenias queden desactualizadas en unos pocos meses. Para solucionar este problema hemos diseñado un nuevo algoritmo que permite la actualización de una filogenia mediante la incorporación iterativa de nuevas secuencias: PHYSER [10]. Además, la propia información evolutiva se utiliza para detectar posibles mutaciones introducidas artificialmente por el proceso de secuenciación, inexistentes en la secuencia original. Las pruebas realizadas con ADN mitocondrial han probado su eficacia y eficiencia, con un coste temporal por secuencia inferior a los 20 segundos.El desarrollo de nuevas herramientas para el análisis de filogenias también ha sido una parte importante de esta tesis. En concreto, se han realizado dos aportaciones principales en este aspecto: PhyloViewer [11] y una herramienta para el análisis de la conservación [12]. PhyloViewer es un visualizador de filogenias extensivas, es decir, filogenias que poseen al menos un millar de hojas. Esta herramienta aporta una novedosa interfaz en la que se muestra el nodo seleccionado y sus nodos hijo, así como toda la información asociada a cada uno de ellos: identificador, secuencia biológica, ... Esta decisión de diseño ha sido orientada a evitar el habitual “borrón” que se produce en la mayoría de herramientas de visualización al mostrar este tipo de filogenias enteras por pantalla. Además, se ha desarrollado en una arquitectura clienteservidor, con lo que el procesamiento de la filogenia se realiza una única vez por parte el servidor. Así, se ha conseguido reducir significativamente los tiempos de carga y acceso por parte del cliente. Por otro lado, la aportación principal de nuestra herramienta para el análisis de la conservación se basa en la paralelización de los métodos clásicos aplicados en este campo, alcanzando speed-ups cercanos al teórico sin pérdida de precisión. Esto ha sido posible gracias a la implementación de dichos métodos desde cero, incorporando la paralelización a nivel de instrucción, en vez de paralelizar implementaciones existentes. Como resultado, nuestra herramienta genera un informe que contiene las conclusiones del análisis de conservación realizado. El usuario puede introducir un umbral de conservación para que el informe destaque solo aquellas posiciones que no lo cumplan. Además, existen dos tipos de informe con distinto nivel de detalle. Ambos se han diseñado para que sean comprensibles y útiles para los usuarios.Finalmente, se ha diseñado e implementado un predictor de mutaciones patógenas en ADN mitocondrial desarollado en máquinas de vectores de soporte (SVM): Mitoclass.1 [13]. Se trata del primer predictor para este tipo de secuencias biológicas. Tanto es así, que ha sido necesario crear el primer repositorio de mutaciones patógenas conocidas, mdmv.1, para poder entrenar y evaluar nuestro predictor. Se ha demostrado que Mitoclass.1 mejora la clasificación de las mutaciones frente a los predictores más conocidos y utilizados, todos ellos orientados al estudio de patogenicidad en ADN nuclear. Este éxito radica en la novedosa combinación de propiedades a evaluar por cada mutación en el proceso de clasificación. Además, otro factor a destacar es el uso de SVM frente a otras alternativas, que han sido probadas y descartadas debido a su menor capacidad de predicción para nuestro caso de aplicación.REFERENCIAS[1] L. Wang and T. Jiang, “On the complexity of multiple sequence alignment,” Journal of computational biology, vol. 1, no. 4, pp. 337–348, 1994.[2] W. H. E. Day, D. S. Johnson, and D. Sankoff, “The Computational Complexity of Inferring Rooted Phylogenies by Parsimony,” Mathematical Biosciences, vol. 81, no. 1, pp. 33–42, 1986.[3] S. Roch, “A short proof that phylogenetic tree reconstruction by maximum likelihood is hard,” IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), vol. 3, no. 1, p. 92, 2006.[4] E. R. Mardis, “The impact of next-generation sequencing technology on genetics,” Trends in genetics, vol. 24, no. 3, pp. 133–141, 2008.[5] J. Álvarez-Jarreta, G. de Miguel Casado, and E. Mayordomo, “PhyloFlow: A Fully Customizable and Automatic Workflow for Phylogeny Estimation,” in ECCB 2014, 2014.[6] J. Álvarez-Jarreta, G. de Miguel Casado, and E. Mayordomo, “PhyloFlow: A Fully Customizable and Automatic Workflow for Phylogenetic Reconstruction,” in IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1–7, IEEE, 2014.[7] J. Álvarez, R. Blanco, and E. Mayordomo, “Workflows with Model Selection: A Multilocus Approach to Phylogenetic Analysis,” in 5th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2011), vol. 93 of Advances in Intelligent and Soft Computing, pp. 39–47, Springer Berlin Heidelberg, 2011.[8] J. Álvarez-Jarreta and E. Ruiz-Pesini, “MEvoLib v1.0: the First Molecular Evolution Library for Python,” BMC Bioinformatics, vol. 17, no. 436, pp. 1–8, 2016.[9] M. van Oven and M. Kayser, “Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation,” Human Mutation, vol. 30, no. 2, pp. E386–E394, 2009.[10] J. Álvarez-Jarreta, E. Mayordomo, and E. Ruiz-Pesini, “PHYSER: An Algorithm to Detect Sequencing Errors from Phylogenetic Information,” in 6th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2012), pp. 105–112, 2012.[11] J. Álvarez-Jarreta and G. de Miguel Casado, “PhyloViewer: A Phylogenetic Tree Viewer for Extense Phylogenies,” in ECCB 2014, 2014.[12] F. Merino-Casallo, J. Álvarez-Jarreta, and E. Mayordomo, “Conservation in mitochondrial DNA: Parallelized estimation and alignment influence,” in 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2015), pp. 1434–1440, IEEE, 2015.[13] A. Martín-Navarro, A. Gaudioso-Simón, J. Álvarez-Jarreta, J. Montoya, E. Mayordomo, and E. Ruiz-Pesini, “Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides,” BMC Bioinformatics, vol. 18, no. 158, pp. 1–11, 2017.<br /

    The Continuum and Leading Twist Limits of Parton Distribution Functions in Lattice QCD

    Get PDF
    In this study, we present continuum limit results for the unpolarized parton distribution function of the nucleon computed in lattice QCD. This study is the first continuum limit using the pseudo-PDF approach with Short Distance Factorization for factorizing lattice QCD calculable matrix elements. Our findings are also compared with the pertinent phenomenological determinations. Inter alia, we are employing the summation Generalized Eigenvalue Problem (sGEVP) technique in order to optimize our control over the excited state contamination which can be one of the most serious systematic errors in this type of calculations. A crucial novel ingredient of our analysis is the parameterization of systematic errors using Jacobi polynomials to characterize and remove both lattice spacing and higher twist contaminations, as well as the leading twist distribution. This method can be expanded in further studies to remove all other systematic errors.Comment: 56 pages, 29 figure

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio

    Relating Mechanical and Genetic Data at Single Cell Level across the Genome to Investigate Metastasis

    Get PDF
    Nine out of every ten cancer-related deaths is caused by metastasis, but the molecular mechanisms driving this process are still not fully understood. Several studies have implicated that as a cell’s metastatic potential increases, cell stiffness decreases. Yet while certain genes that affect cell mechanics have been studied, a genome-wide study of networks that modulate cell biophysical properties has not been attempted. The long-term goal of this research is to understand the molecular and mechanical mechanisms driving metastasis. To reach this goal, a new methodology was developed to combine mechanical and gene expression data for the same single cells. Additionally, a novel microfluidics approach for cell sorting based upon biophysical properties was leveraged for the high-throughput discovery of genes linked to cell mechanics and metastasis. These approaches led to deeper understanding of how cellular mechanics are regulated within the context of networks of genes associated with increased metastatic potential. I investigated this intersection through the following aims: 1) Create and validate a combined single cell mechanics and gene expression methodology, 2) Identify genes related to mechanical changes in cancer cells through GeCKO high-throughput mechanical screen, and 3) Validate phenotypic and mechanotypic importance of genes of interest.Ph.D
    corecore