422 research outputs found

    Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation

    Full text link
    We present a parallelized optimization method based on fast Neural Radiance Fields (NeRF) for estimating 6-DoF pose of a camera with respect to an object or scene. Given a single observed RGB image of the target, we can predict the translation and rotation of the camera by minimizing the residual between pixels rendered from a fast NeRF model and pixels in the observed image. We integrate a momentum-based camera extrinsic optimization procedure into Instant Neural Graphics Primitives, a recent exceptionally fast NeRF implementation. By introducing parallel Monte Carlo sampling into the pose estimation task, our method overcomes local minima and improves efficiency in a more extensive search space. We also show the importance of adopting a more robust pixel-based loss function to reduce error. Experiments demonstrate that our method can achieve improved generalization and robustness on both synthetic and real-world benchmarks.Comment: ICRA 2023. Project page at https://pnerfp.github.io

    Robust Localization in 3D Prior Maps for Autonomous Driving.

    Full text link
    In order to navigate autonomously, many self-driving vehicles require precise localization within an a priori known map that is annotated with exact lane locations, traffic signs, and additional metadata that govern the rules of the road. This approach transforms the extremely difficult and unpredictable task of online perception into a more structured localization problem—where exact localization in these maps provides the autonomous agent a wealth of knowledge for safe navigation. This thesis presents several novel localization algorithms that leverage a high-fidelity three-dimensional (3D) prior map that together provide a robust and reliable framework for vehicle localization. First, we present a generic probabilistic method for localizing an autonomous vehicle equipped with a 3D light detection and ranging (LIDAR) scanner. This proposed algorithm models the world as a mixture of several Gaussians, characterizing the z-height and reflectivity distribution of the environment—which we rasterize to facilitate fast and exact multiresolution inference. Second, we propose a visual localization strategy that replaces the expensive 3D LIDAR scanners with significantly cheaper, commodity cameras. In doing so, we exploit a graphics processing unit to generate synthetic views of our belief environment, resulting in a localization solution that achieves a similar order of magnitude error rate with a sensor that is several orders of magnitude cheaper. Finally, we propose a visual obstacle detection algorithm that leverages knowledge of our high-fidelity prior maps in its obstacle prediction model. This not only provides obstacle awareness at high rates for vehicle navigation, but also improves our visual localization quality as we are cognizant of static and non-static regions of the environment. All of these proposed algorithms are demonstrated to be real-time solutions for our self-driving car.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133410/1/rwolcott_1.pd

    09251 Abstracts Collection -- Scientific Visualization

    Get PDF
    From 06-14-2009 to 06-19-2009, the Dagstuhl Seminar 09251 ``Scientific Visualization \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, over 50 international participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Improved fMRI Time-Series Registration Using Joint Probability Density Priors

    Full text link
    Functional MRI (fMRI) time-series studies are plagued by varying degrees of subject head motion. Faithful head motion correction is essential to accurately detect brain activation using statistical analyses of these time-series. Mutual information (MI) based slice-to-volume (SV) registration is used for motion estimation when the rate of change of head position is large. SV registration accounts for head motion between slice acquisitions by estimating an independent rigid transformation for each slice in the time-series. Consequently each MI optimization uses intensity counts from a single time-series slice, making the algorithm susceptible to noise for low complexity endslices (i.e., slices near the top of the head scans). This work focuses on improving the accuracy of MI-based SV registration of end-slices by using joint probability density priors derived from registered high complexity centerslices (i.e., slices near the middle of the head scans). Results show that the use of such priors can significantly improve SV registration accuracy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85928/1/Fessler236.pd

    Dense estimation and object-based segmentation of the optical flow with robust techniques

    Full text link
    • …
    corecore