187 research outputs found

    Parallelized neural network system for solving Euclidean traveling salesman problem

    Get PDF
    We investigate a parallelized divide-and-conquer approach based on a self-organizing map (SOM) in order to solve the Euclidean Traveling Salesman Problem (TSP). Our approach consists of dividing cities into municipalities, evolving the most appropriate solution from each municipality so as to find the best overall solution and, finally, joining neighborhood municipalities by using a blend operator to identify the final solution. We evaluate the performance of parallelized approach over standard TSP test problems (TSPLIB) to show that our approach gives a better answer in terms of quality and time rather than the sequential evolutionary SOM

    A Study of Traveling Salesman Problem Using Fuzzy Self Organizing Map

    Get PDF

    Generalize a Small Pre-trained Model to Arbitrarily Large TSP Instances

    Full text link
    For the traveling salesman problem (TSP), the existing supervised learning based algorithms suffer seriously from the lack of generalization ability. To overcome this drawback, this paper tries to train (in supervised manner) a small-scale model, which could be repetitively used to build heat maps for TSP instances of arbitrarily large size, based on a series of techniques such as graph sampling, graph converting and heat maps merging. Furthermore, the heat maps are fed into a reinforcement learning approach (Monte Carlo tree search), to guide the search of high-quality solutions. Experimental results based on a large number of instances (with up to 10,000 vertices) show that, this new approach clearly outperforms the existing machine learning based TSP algorithms, and significantly improves the generalization ability of the trained model
    corecore