880 research outputs found

    Parallelization of an algorithm for the automatic detection of deformable objects

    Get PDF
    This work presents the parallelization of an algorithm for the detection of deformable objects in digital images. The parallelization has been implemented with the message passing paradigm, using a master-slave model. Two versions have been developed, with synchronous and asynchronous communications

    A Study of Speed of the Boundary Element Method as applied to the Realtime Computational Simulation of Biological Organs

    Full text link
    In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.Comment: preprint, draft, 2 tables, 47 references, 7 files, Codes that can solve three dimensional linear elastostatic problems using constant boundary elements (of triangular shape) while ignoring body forces are provided as supplementary files; codes are distributed under the MIT License in three versions: i) MATLAB version ii) Fortran 90 version (sequential code) iii) Fortran 90 version (parallel code

    The whole mesh deformation model: A fast image segmentation method suitable for effective parallelization

    No full text
    In this article, we propose a novel image segmentation method called the whole mesh deformation (WMD) model, which aims at addressing the problems of modern medical imaging. Such problems have raised from the combination of several factors: (1) significant growth of medical image volumes sizes due to increasing capabilities of medical acquisition devices; (2) the will to increase the complexity of image processing algorithms in order to explore new functionality; (3) change in processor development and turn towards multi processing units instead of growing bus speeds and the number of operations per second of a single processing unit. Our solution is based on the concept of deformable models and is characterized by a very effective and precise segmentation capability. The proposed WMD model uses a volumetric mesh instead of a contour or a surface to represent the segmented shapes of interest, which allows exploiting more information in the image and obtaining results in shorter times, independently of image contents. The model also offers a good ability for topology changes and allows effective parallelization of workflow, which makes it a very good choice for large datasets. We present a precise model description, followed by experiments on artificial images and real medical data

    High performance computing for 3D image segmentation

    Get PDF
    Digital image processing is a very popular and still very promising eld of science, which has been successfully applied to numerous areas and problems, reaching elds like forensic analysis, security systems, multimedia processing, aerospace, automotive, and many more. A very important part of the image processing area is image segmentation. This refers to the task of partitioning a given image into multiple regions and is typically used to locate and mark objects and boundaries in input scenes. After segmentation the image represents a set of data far more suitable for further algorithmic processing and decision making. Image segmentation algorithms are a very broad eld and they have received signi cant amount of research interest A good example of an area, in which image processing plays a constantly growing role, is the eld of medical solutions. The expectations and demands that are presented in this branch of science are very high and dif cult to meet for the applied technology. The problems are challenging and the potential bene ts are signi cant and clearly visible. For over thirty years image processing has been applied to different problems and questions in medicine and the practitioners have exploited the rich possibilities that it offered. As a result, the eld of medicine has seen signi cant improvements in the interpretation of examined medical data. Clearly, the medical knowledge has also evolved signi cantly over these years, as well as the medical equipment that serves doctors and researchers. Also the common computer hardware, which is present at homes, of ces and laboratories, is constantly evolving and changing. All of these factors have sculptured the shape of modern image processing techniques and established in which ways it is currently used and developed. Modern medical image processing is centered around 3D images with high spatial and temporal resolution, which can bring a tremendous amount of data for medical practitioners. Processing of such large sets of data is not an easy task, requiring high computational power. Furthermore, in present times the computational power is not as easily available as in recent years, as the growth of possibilities of a single processing unit is very limited - a trend towards multi-unit processing and parallelization of the workload is clearly visible. Therefore, in order to continue the development of more complex and more advanced image processing techniques, a new direction is necessary. A very interesting family of image segmentation algorithms, which has been gaining a lot of focus in the last three decades, is called Deformable Models. They are based on the concept of placing a geometrical object in the scene of interest and deforming it until it assumes the shape of objects of interest. This process is usually guided by several forces, which originate in mathematical functions, features of the input images and other constraints of the deformation process, like object curvature or continuity. A range of very desired features of Deformable Models include their high capability for customization and specialization for different tasks and also extensibility with various approaches for prior knowledge incorporation. This set of characteristics makes Deformable Models a very ef cient approach, which is capable of delivering results in competitive times and with very good quality of segmentation, robust to noisy and incomplete data. However, despite the large amount of work carried out in this area, Deformable Models still suffer from a number of drawbacks. Those that have been gaining the most focus are e.g. sensitivity to the initial position and shape of the model, sensitivity to noise in the input images and to awed input data, or the need for user supervision over the process. The work described in this thesis aims at addressing the problems of modern image segmentation, which has raised from the combination of above-mentioned factors: the signi cant growth of image volumes sizes, the growth of complexity of image processing algorithms, coupled with the change in processor development and turn towards multi-processing units instead of growing bus speeds and the number of operations per second of a single processing unit. We present our innovative model for 3D image segmentation, called the The Whole Mesh Deformation model, which holds a set of very desired features that successfully address the above-mentioned requirements. Our model has been designed speci cally for execution on parallel architectures and with the purpose of working well with very large 3D images that are created by modern medical acquisition devices. Our solution is based on Deformable Models and is characterized by a very effective and precise segmentation capability. The proposed Whole Mesh Deformation (WMD) model uses a 3D mesh instead of a contour or a surface to represent the segmented shapes of interest, which allows exploiting more information in the image and obtaining results in shorter times. The model offers a very good ability for topology changes and allows effective parallelization of work ow, which makes it a very good choice for large data-sets. In this thesis we present a precise model description, followed by experiments on arti cial images and real medical data

    Algoritmos generales para simuladores de cirugía laparoscópica

    Get PDF
    Recent advances in fields such as modeling of deformable objects, haptic technologies, immersive technologies, computation capacity and virtual environments have created the conditions to offer novel and suitable training tools and learning methods in the medical area. One of these training tools is the virtual surgical simulator, which has no limitations of time or risk, unlike conventional methods of training. Moreover, these simulators allow for the quantitative evaluation of the surgeon performance, giving the possibility to create performance standards in order to define if the surgeon is well prepared to execute a determined surgical procedure on a real patient. This paper describes the development of a virtual simulator for laparoscopic surgery. The simulator allows the multimodal interaction between the surgeon and the surgical virtual environment using visual and haptic feedback devices. To make the experience of the surgeon closer to the real surgical environment a specific user interface was developed. Additionally in this paper we describe some implementations carried out to face typical challenges presented in surgical simulators related to the tradeoff between real-time performance and high realism; for instance, the deformation of soft tissues are simulated using a GPU (Graphics Processor Unit) -based implementation of the mass-spring model. In this case, we explain the algorithms developed taking into account the particular case of a cholecystectomy procedure in laparoscopic surgery.Recientes avances en áreas tales como modelación computacional de objetos deformables, tecnologías hápticas, tecnologías inmersivas, capacidad de procesamiento y ambiente virtuales han proporcionado las bases para el desarrollo de herramientas y métodos de aprendizaje confiables en el entrenamiento médico. Una de estas herramientas de entrenamiento son los simuladores quirúrgicos virtuales, los cuales no tienen limitaciones de tiempo o riesgos a diferencia de los métodos convencionales de entrenamiento. Además, dichos simuladores permiten una evaluación cuantitativa del desempeño del cirujano, dando la posibilidad de crear estándares de desempeño con el fin de definir en qué momento un cirujano está preparado para realizar un determinado procedimiento quirúrgico sobre un paciente. Este artículo describe el desarrollo de un simulador virtual para cirugía laparoscópica. Este simulador permite la interacción multimodal entre el cirujano y el ambiente virtual quirúrgico usando dispositivos de retroalimentación visual y háptica. Para hacer la experiencia del cirujano más cercana a la de una ambiente quirúrgico real se desarrolló una interfaz cirujano-simulador especial. Adicionalmente en este artículo se describen algunas implementaciones que solucionan los problemas típicos cuando se desarrolla un simulador quirúrgico, principalmente relacionados con lograr un desempeño en tiempo real mientras se sacrifica el nivel de realismo de la simulación: por ejemplo, la deformación de los tejidos blandos simulados usando una implementación del modelo masa-resorte en la unidad de procesamiento gráfico. En este caso se describen los algoritmos desarrollados tomando en cuenta la simulación de un procedimiento laparoscópico llamado colecistectomía

    Semi-Automatic segmentation of multiple mouse embryos in MR images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The motivation behind this paper is to aid the automatic phenotyping of mouse embryos, wherein multiple embryos embedded within a single tube were scanned using Magnetic Resonance Imaging (MRI).</p> <p>Results</p> <p>Our algorithm, a modified version of the simplex deformable model of Delingette, addresses various issues with deformable models including initialization and inability to adapt to boundary concavities. In addition, it proposes a novel technique for automatic collision detection of multiple objects which are being segmented simultaneously, hence avoiding major leaks into adjacent neighbouring structures. We address the initialization problem by introducing balloon forces which expand the initial spherical models close to the true boundaries of the embryos. This results in models which are less sensitive to initial minimum of two fold after each stage of deformation. To determine collision during segmentation, our unique collision detection algorithm finds the intersection between binary masks created from the deformed models after every few iterations of the deformation and modifies the segmentation parameters accordingly hence avoiding collision.</p> <p>We have segmented six tubes of three dimensional MR images of multiple mouse embryos using our modified deformable model algorithm. We have then validated the results of the our semi-automatic segmentation versus manual segmentation of the same embryos. Our Validation shows that except paws and tails we have been able to segment the mouse embryos with minor error.</p> <p>Conclusions</p> <p>This paper describes our novel multiple object segmentation technique with collision detection using a modified deformable model algorithm. Further, it presents the results of segmenting magnetic resonance images of up to 32 mouse embryos stacked in one gel filled test tube and creating 32 individual masks.</p
    corecore