971 research outputs found

    Shared Nearest-Neighbor Quantum Game-Based Attribute Reduction with Hierarchical Coevolutionary Spark and Its Application in Consistent Segmentation of Neonatal Cerebral Cortical Surfaces

    Full text link
    © 2012 IEEE. The unprecedented increase in data volume has become a severe challenge for conventional patterns of data mining and learning systems tasked with handling big data. The recently introduced Spark platform is a new processing method for big data analysis and related learning systems, which has attracted increasing attention from both the scientific community and industry. In this paper, we propose a shared nearest-neighbor quantum game-based attribute reduction (SNNQGAR) algorithm that incorporates the hierarchical coevolutionary Spark model. We first present a shared coevolutionary nearest-neighbor hierarchy with self-evolving compensation that considers the features of nearest-neighborhood attribute subsets and calculates the similarity between attribute subsets according to the shared neighbor information of attribute sample points. We then present a novel attribute weight tensor model to generate ranking vectors of attributes and apply them to balance the relative contributions of different neighborhood attribute subsets. To optimize the model, we propose an embedded quantum equilibrium game paradigm (QEGP) to ensure that noisy attributes do not degrade the big data reduction results. A combination of the hierarchical coevolutionary Spark model and an improved MapReduce framework is then constructed that it can better parallelize the SNNQGAR to efficiently determine the preferred reduction solutions of the distributed attribute subsets. The experimental comparisons demonstrate the superior performance of the SNNQGAR, which outperforms most of the state-of-the-art attribute reduction algorithms. Moreover, the results indicate that the SNNQGAR can be successfully applied to segment overlapping and interdependent fuzzy cerebral tissues, and it exhibits a stable and consistent segmentation performance for neonatal cerebral cortical surfaces

    Handling Imbalanced Data through Re-sampling: Systematic Review

    Get PDF
    Handling imbalanced data is an important issue that can affect the validity and reliability of the results. One common approach to addressing this issue is through re-sampling the data. Re-sampling is a technique that allows researchers to balance the class distribution of their dataset by either over-sampling the minority class or under-sampling the majority class. Over-sampling involves adding more copies of the minority class examples to the dataset in order to balance out the class distribution. On the other hand, under-sampling involves removing some of the majority class examples from the dataset in order to balance out the class distribution. It's also common to combine both techniques, usually called hybrid sampling. It is important to note that re-sampling techniques can have an impact on the model's performance, and it is essential to evaluate the model using different evaluation metrics and to consider other techniques such as cost-sensitive learning and anomaly detection. In addition, it is important to keep in mind that increasing the sample size is always a good idea to improve the performance of the model. In this systematic review, we aim to provide an overview of existing methods for re-sampling imbalanced data. We will focus on methods that have been proposed in the literature and evaluate their effectiveness through a thorough examination of experimental results. The goal of this review is to provide practitioners with a comprehensive understanding of the different re-sampling methods available, as well as their strengths and weaknesses, to help them make informed decisions when dealing with imbalanced data

    Control of nanorobot motion in a quantum alpha field

    Get PDF

    Control design of uncertain quantum systems with fuzzy estimators

    Get PDF
    published_or_final_versio
    corecore