294 research outputs found

    Enabling parallelism and optimizations in data mining algorithms for power-law data

    Get PDF
    Today's data mining tasks aim to extract meaningful information from a large amount of data in a reasonable time mainly via means of --- a) algorithmic advances, such as fast approximate algorithms and efficient learning algorithms, and b) architectural advances, such as machines with massive compute capacity involving distributed multi-core processors and high throughput accelerators. For current and future generation processors, parallel algorithms are critical for fully utilizing computing resources. Furthermore, exploiting data properties for performance gain becomes crucial for data mining applications. In this work, we focus our attention on power-law behavior –-- a common property found in a large class of data, such as text data, internet traffic, and click-stream data. Specifically, we address the following questions in the context of power-law data: How well do the critical data mining algorithms of current interest fit with today's parallel architectures? Which algorithmic and mapping opportunities can be leveraged to further improve performance?, and What are the relative challenges and gains for such approaches? Specifically, we first investigate the suitability of the "frequency estimation" problem for GPU-scale parallelism. Sketching algorithms are a popular choice for this task due to their desirable trade-off between estimation accuracy and space-time efficiency. However, most of the past work on sketch-based frequency estimation focused on CPU implementations. In our work, we propose a novel approach for sketches, which exploits the natural skewness in the power-law data to efficiently utilize the massive amounts of parallelism in modern GPUs. Next, we explore the problem of "identifying top-K frequent elements" for distributed data streams on modern distributed settings with both multi-core and multi-node CPU parallelism. Sketch-based approaches, such as Count-Min Sketch (CMS) with top-K heap, have an excellent update time but lacks the important property of reducibility, which is needed for exploiting data parallelism. On the other end, the popular Frequent Algorithm (FA) leads to reducible summaries, but its update costs are high. Our approach Topkapi, gives the best of both worlds, i.e., it is reducible like FA and has an efficient update time similar to CMS. For power-law data, Topkapi possesses strong theoretical guarantees and leads to significant performance gains, relative to past work. Finally, we study Word2Vec, a popular word embedding method widely used in Machine learning and Natural Language Processing applications, such as machine translation, sentiment analysis, and query answering. This time, we target Single Instruction Multiple Data (SIMD) parallelism. With the increasing vector lengths in commodity CPUs, such as AVX-512 with a vector length of 512 bits, efficient vector processing unit utilization becomes a major performance game-changer. By employing a static multi-version code generation strategy coupled with an algorithmic approximation based on the power-law frequency distribution of words, we achieve significant reductions in training time relative to the state-of-the-art.Ph.D

    Hardware-Aware Algorithm Designs for Efficient Parallel and Distributed Processing

    Get PDF
    The introduction and widespread adoption of the Internet of Things, together with emerging new industrial applications, bring new requirements in data processing. Specifically, the need for timely processing of data that arrives at high rates creates a challenge for the traditional cloud computing paradigm, where data collected at various sources is sent to the cloud for processing. As an approach to this challenge, processing algorithms and infrastructure are distributed from the cloud to multiple tiers of computing, closer to the sources of data. This creates a wide range of devices for algorithms to be deployed on and software designs to adapt to.In this thesis, we investigate how hardware-aware algorithm designs on a variety of platforms lead to algorithm implementations that efficiently utilize the underlying resources. We design, implement and evaluate new techniques for representative applications that involve the whole spectrum of devices, from resource-constrained sensors in the field, to highly parallel servers. At each tier of processing capability, we identify key architectural features that are relevant for applications and propose designs that make use of these features to achieve high-rate, timely and energy-efficient processing.In the first part of the thesis, we focus on high-end servers and utilize two main approaches to achieve high throughput processing: vectorization and thread parallelism. We employ vectorization for the case of pattern matching algorithms used in security applications. We show that re-thinking the design of algorithms to better utilize the resources available in the platforms they are deployed on, such as vector processing units, can bring significant speedups in processing throughout. We then show how thread-aware data distribution and proper inter-thread synchronization allow scalability, especially for the problem of high-rate network traffic monitoring. We design a parallelization scheme for sketch-based algorithms that summarize traffic information, which allows them to handle incoming data at high rates and be able to answer queries on that data efficiently, without overheads.In the second part of the thesis, we target the intermediate tier of computing devices and focus on the typical examples of hardware that is found there. We show how single-board computers with embedded accelerators can be used to handle the computationally heavy part of applications and showcase it specifically for pattern matching for security-related processing. We further identify key hardware features that affect the performance of pattern matching algorithms on such devices, present a co-evaluation framework to compare algorithms, and design a new algorithm that efficiently utilizes the hardware features.In the last part of the thesis, we shift the focus to the low-power, resource-constrained tier of processing devices. We target wireless sensor networks and study distributed data processing algorithms where the processing happens on the same devices that generate the data. Specifically, we focus on a continuous monitoring algorithm (geometric monitoring) that aims to minimize communication between nodes. By deploying that algorithm in action, under realistic environments, we demonstrate that the interplay between the network protocol and the application plays an important role in this layer of devices. Based on that observation, we co-design a continuous monitoring application with a modern network stack and augment it further with an in-network aggregation technique. In this way, we show that awareness of the underlying network stack is important to realize the full potential of the continuous monitoring algorithm.The techniques and solutions presented in this thesis contribute to better utilization of hardware characteristics, across a wide spectrum of platforms. We employ these techniques on problems that are representative examples of current and upcoming applications and contribute with an outlook of emerging possibilities that can build on the results of the thesis

    Architectures and GPU-Based Parallelization for Online Bayesian Computational Statistics and Dynamic Modeling

    Get PDF
    Recent work demonstrates that coupling Bayesian computational statistics methods with dynamic models can facilitate the analysis of complex systems associated with diverse time series, including those involving social and behavioural dynamics. Particle Markov Chain Monte Carlo (PMCMC) methods constitute a particularly powerful class of Bayesian methods combining aspects of batch Markov Chain Monte Carlo (MCMC) and the sequential Monte Carlo method of Particle Filtering (PF). PMCMC can flexibly combine theory-capturing dynamic models with diverse empirical data. Online machine learning is a subcategory of machine learning algorithms characterized by sequential, incremental execution as new data arrives, which can give updated results and predictions with growing sequences of available incoming data. While many machine learning and statistical methods are adapted to online algorithms, PMCMC is one example of the many methods whose compatibility with and adaption to online learning remains unclear. In this thesis, I proposed a data-streaming solution supporting PF and PMCMC methods with dynamic epidemiological models and demonstrated several successful applications. By constructing an automated, easy-to-use streaming system, analytic applications and simulation models gain access to arriving real-time data to shorten the time gap between data and resulting model-supported insight. The well-defined architecture design emerging from the thesis would substantially expand traditional simulation models' potential by allowing such models to be offered as continually updated services. Contingent on sufficiently fast execution time, simulation models within this framework can consume the incoming empirical data in real-time and generate informative predictions on an ongoing basis as new data points arrive. In a second line of work, I investigated the platform's flexibility and capability by extending this system to support the use of a powerful class of PMCMC algorithms with dynamic models while ameliorating such algorithms' traditionally stiff performance limitations. Specifically, this work designed and implemented a GPU-enabled parallel version of a PMCMC method with dynamic simulation models. The resulting codebase readily has enabled researchers to adapt their models to the state-of-art statistical inference methods, and ensure that the computation-heavy PMCMC method can perform significant sampling between the successive arrival of each new data point. Investigating this method's impact with several realistic PMCMC application examples showed that GPU-based acceleration allows for up to 160x speedup compared to a corresponding CPU-based version not exploiting parallelism. The GPU accelerated PMCMC and the streaming processing system can complement each other, jointly providing researchers with a powerful toolset to greatly accelerate learning and securing additional insight from the high-velocity data increasingly prevalent within social and behavioural spheres. The design philosophy applied supported a platform with broad generalizability and potential for ready future extensions. The thesis discusses common barriers and difficulties in designing and implementing such systems and offers solutions to solve or mitigate them

    Fast algorithm for real-time rings reconstruction

    Get PDF
    The GAP project is dedicated to study the application of GPU in several contexts in which real-time response is important to take decisions. The definition of real-time depends on the application under study, ranging from answer time of μs up to several hours in case of very computing intensive task. During this conference we presented our work in low level triggers [1] [2] and high level triggers [3] in high energy physics experiments, and specific application for nuclear magnetic resonance (NMR) [4] [5] and cone-beam CT [6]. Apart from the study of dedicated solution to decrease the latency due to data transport and preparation, the computing algorithms play an essential role in any GPU application. In this contribution, we show an original algorithm developed for triggers application, to accelerate the ring reconstruction in RICH detector when it is not possible to have seeds for reconstruction from external trackers

    High-Performance and Power-Aware Graph Processing on GPUs

    Get PDF
    Graphs are a common representation in many problem domains, including engineering, finance, medicine, and scientific applications. Different problems map to very large graphs, often involving millions of vertices. Even though very efficient sequential implementations of graph algorithms exist, they become impractical when applied on such actual very large graphs. On the other hand, graphics processing units (GPUs) have become widespread architectures as they provide massive parallelism at low cost. Parallel execution on GPUs may achieve speedup up to three orders of magnitude with respect to the sequential counterparts. Nevertheless, accelerating efficient and optimized sequential algorithms and porting (i.e., parallelizing) their implementation to such many-core architectures is a very challenging task. The task is made even harder since energy and power consumption are becoming constraints in addition, or in same case as an alternative, to performance. This work aims at developing a platform that provides (I) a library of parallel, efficient, and tunable implementations of the most important graph algorithms for GPUs, and (II) an advanced profiling model to analyze both performance and power consumption of the algorithm implementations. The platform goal is twofold. Through the library, it aims at saving developing effort in the parallelization task through a primitive-based approach. Through the profiling framework, it aims at customizing such primitives by considering both the architectural details and the target efficiency metrics (i.e., performance or power)

    Computing Performance Benchmarks among CPU, GPU, and FPGA

    Get PDF
    In recent years, the world of high performance computing has been developing rapidly. The goal of this project was to conduct computing performance benchmarks on three major computing platforms, CPUs, GPUs, and FPGAs. A total of 66 benchmarks were evaluated. GPUs outperformed the other platforms in terms of execution time. CPUs outperformed in overall execution combined with transfer time. FPGAs outperformed for fixed algorithms using streaming. The team made several recommendations for further research in this area
    corecore