248 research outputs found

    A new lattice Boltzmann model for interface reactions between immiscible fluids

    Get PDF
    In this paper, we describe a lattice Boltzmann model to simulate chemical reactions taking place at the interface between two immiscible fluids. The phase-field approach is used to identify the interface and its orientation, the concentration of reactant at the interface is then calculated iteratively to impose the correct reactive flux condition. The main advantages of the model is that interfaces are considered part of the bulk dynamics with the corrective reactive flux introduced as a source/sink term in the collision step, and, as a consequence, the model’s implementation and performance is independent of the interface geometry and orientation. Results obtained with the proposed model are compared to analytical solution for three different benchmark tests (stationary flat boundary, moving flat boundary and dissolving droplet). We find an excellent agreement between analytical and numerical solutions in all cases. Finally, we present a simulation coupling the Shan Chen multiphase model and the interface reactive model to simulate the dissolution of a collection of immiscible droplets with different sizes rising by buoyancy in a stagnant fluid

    Advanced Vadose Zone Simulations Using TOUGH

    Full text link
    The vadose zone can be characterized as a complex subsurface system in which intricate physical and biogeochemical processes occur in response to a variety of natural forcings and human activities. This makes it difficult to describe, understand, and predict the behavior of this specific subsurface system. The TOUGH nonisothermal multiphase flow simulators are well-suited to perform advanced vadose zone studies. The conceptual models underlying the TOUGH simulators are capable of representing features specific to the vadose zone, and of addressing a variety of coupled phenomena. Moreover, the simulators are integrated into software tools that enable advanced data analysis, optimization, and system-level modeling. We discuss fundamental and computational challenges in simulating vadose zone processes, review recent advances in modeling such systems, and demonstrate some capabilities of the TOUGH suite of codes using illustrative examples

    High-resolution shock-capturing numerical simulations of three-phase immiscible fluids from the unsaturated to the saturated zone

    Get PDF
    Numerical modeling of immiscible contaminant fluid flow in unsaturated and saturated porous aquifers is of great importance in many scientific fields to properly manage groundwater resources. We present a high-resolution numerical model that simulates three-phase immiscible fluid flow in both unsaturated and saturated zone in a porous aquifer. We use coupled conserved mass equations for each phase and study the dynamics of a multiphase fluid flow as a function of saturation, capillary pressure, permeability, and porosity of the different phases, initial and boundary conditions. To deal with the sharp front originated from the partial differential equations’ nonlinearity and accurately propagate the sharp front of the fluid component, we use a high-resolution shock-capturing method to treat discontinuities due to capillary pressure and permeabilities that depend on the saturation of the three different phases. The main approach to the problem’s numerical solution is based on (full) explicit evolution of the discretized (in-space) variables. Since explicit methods require the time step to be sufficiently small, this condition is very restrictive, particularly for long-time integrations. With the increased computational speed and capacity of today’s multicore computer, it is possible to simulate in detail contaminants’ fate flow using high-performance computing

    Efficient Parallel Simulation of CO2 Geologic Sequestration in Saline Aquifers

    Get PDF

    On the predictivity of pore-scale simulations : estimating uncertainties with multilevel Monte Carlo

    Get PDF
    A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another “equivalent” sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics

    Large scale cavity dissolution: From the physical problem to its numerical solution

    Get PDF
    Dissolution of underground cavities by ground water (or solutions) may cause environmental problems and geological hazards. Efficient modeling and numerical solving of such phenomena are critical for risk analysis. To solve the cavity dissolution problems, we propose to use a porous medium based local non-equilibrium diffuse interface method (DIM) which does not need to track the dissolution fronts explicitly as the sharp front methods (such as ALE). To reduce the grid blocks when using the DIM method, an adaptive mesh refinement (AMR) method is used to have higher resolutions following the moving fronts. An efficient fully implicit scheme is used by taking care of the velocities across the gridblock interfaces on the AMR grid. Numerical examples of salt dissolution under different flow conditions were performed to validate the modeling and numerical solving. Core-scale and reservoir-scale cases were carried out to study the mass transport and the evolution of the profiles of the dissolution fronts. Gravity-driven physical instabilities are found to be more strong in the infinite channel with upper and lower planes than in the 3D tube configuration under the same condition. The implementations with the AMR method also showed a very good computational efficiency, while obtaining good agreement with the finest-grid solutions

    How to integrate geochemistry at affordable costs into reactive transport for large-scale systems: Abstract Book

    Get PDF
    This international workshop entitled “How to integrate geochemistry at affordable costs into reac-tive transport for large-scale systems” was organized by the Institute of Resource Ecology of the Helmholtz-Zentrum Dresden Rossendorf in Feb-ruary 2020. A mechanistic understanding and building on that an appropriate modelling of geochemical processes is essential for reliably predicting contaminant transport in groundwater systems, but also in many other cases where migration of hazardous substances is expected and consequently has to be assessed and limited. In case of already present contaminations, such modelling may help to quantify the threads and to support the development and application of suitable remediation measures. Typical application areas are nuclear waste disposal, environmental remediation, mining and milling, carbon capture & storage, or geothermal energy production. Experts from these fields were brought together to discuss large-scale reactive transport modelling (RTM) because the scales covered by such pre-dictions may reach up to one million year and dozens of kilometers. Full-fledged incorporation of geochemical processes, e.g. sorption, precipitation, or redox reactions (to name just a few important basic processes) will thus create inacceptable long computing times. As an effective way to integrate geochemistry at affordable costs into RTM different geochemical concepts (e.g. multidimensional look-up tables, surrogate functions, machine learning, utilization of uncertainty and sensitivity analysis etc.) exist and were extensively discussed throughout the workshop. During the 3-day program of the workshop keynote and regular lectures from experts in the field, a poster session, and a radio lab tour had been offered. In total, 40 scientists from 28 re-search institutes and 8 countries participated
    • …
    corecore