4 research outputs found

    Heterogeneous integration of optical wireless communications within next generation networks

    Full text link
    Unprecedented traffic growth is expected in future wireless networks and new technologies will be needed to satisfy demand. Optical wireless (OW) communication offers vast unused spectrum and high area spectral efficiency. In this work, optical cells are envisioned as supplementary access points within heterogeneous RF/OW networks. These networks opportunistically offload traffic to optical cells while utilizing the RF cell for highly mobile devices and devices that lack a reliable OW connection. Visible light communication (VLC) is considered as a potential OW technology due to the increasing adoption of solid state lighting for indoor illumination. Results of this work focus on a full system view of RF/OW HetNets with three primary areas of analysis. First, the need for network densication beyond current RF small cell implementations is evaluated. A media independent model is developed and results are presented that provide motivation for the adoption of hyper dense small cells as complementary components within multi-tier networks. Next, the relationships between RF and OW constraints and link characterization parameters are evaluated in order to define methods for fair comparison when user-centric channel selection criteria are used. RF and OW noise and interference characterization techniques are compared and common OW characterization models are demonstrated to show errors in excess of 100x when dominant interferers are present. Finally, dynamic characteristics of hyper dense OW networks are investigated in order to optimize traffic distribution from a network-centric perspective. A Kalman Filter model is presented to predict device motion for improved channel selection and a novel OW range expansion technique is presented that dynamically alters coverage regions of OW cells by 50%. In addition to analytical results, the dissertation describes two tools that have been created for evaluation of RF/OW HetNets. A communication and lighting simulation toolkit has been developed for modeling and evaluation of environments with VLC-enabled luminaires. The toolkit enhances an iterative site based impulse response simulator model to utilize GPU acceleration and achieves 10x speedup over the previous model. A software defined testbed for OW has also been proposed and applied. The testbed implements a VLC link and a heterogeneous RF/VLC connection that demonstrates the RF/OW HetNet concept as proof of concept

    Coexistence of directional and non-directional technologies in 6G wireless dense networks

    Get PDF
    Dense networks are characterized by the prevalence of wireless access points (APs) in close proximity to a population of user devices on a similar scale. By increasing AP density, the aggregate data consumption of a system can be dramatically increased. In this dissertation we consider dense deployment of directional visible light APs. Firstly, we analyze the performance of a visible light communication (VLC) link and propose algorithmic methods as well as novel receiver structures to enhance its quality. Secondly, we study handover algorithms and investigate an AP placement strategy that ties to the system outage probability. Thirdly, we use a geometric model for an indoor space and a reference optical channel model to formulate an optimization problem that proposes a dynamic field of view (FOV) receiver with a goal of optimizing receiver FOV for maximum signal to noise ratio (SNR). From the promising results we get, we then propose the dynamic FOV technique with receiver tracking capability. Its results show an average SNR increase of up to 40% when compared to a fixed FOV receiver. These results motivate the adoption of dynamic pointing and adaptive FOV at the receiver in order to realize improved performance for mobile devices in an optical wireless dense network. This opts us to study interference in VLC systems and how to mitigate it using our proposed receivers. In the context of multi-user networks, we formulate two main novel optimization problems i) a joint optimization of transmit emission pattern and transmit power while satisfying illumination requirements and ii) an optimization to allocate users, balance the network load and optimize device FOV for best performance. We then evaluate the effect of self-blockage as well as random human blockers on our proposed receivers. Finally, we propose to deploy the VLC system in a hybrid setting of other technologies to evaluate the overall system performance for future 6G networks.2022-01-17T00:00:00

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    High-fidelity graphics using unconventional distributed rendering approaches

    Get PDF
    High-fidelity rendering requires a substantial amount of computational resources to accurately simulate lighting in virtual environments. While desktop computing, with the aid of modern graphics hardware, has shown promise in delivering realistic rendering at interactive rates, real-time rendering of moderately complex scenes is still unachievable on the majority of desktop machines and the vast plethora of mobile computing devices that have recently become commonplace. This work provides a wide range of computing devices with high-fidelity rendering capabilities via oft-unused distributed computing paradigms. It speeds up the rendering process on formerly capable devices and provides full functionality to incapable devices. Novel scheduling and rendering algorithms have been designed to best take advantage of the characteristics of these systems and demonstrate the efficacy of such distributed methods. The first is a novel system that provides multiple clients with parallel resources for rendering a single task, and adapts in real-time to the number of concurrent requests. The second is a distributed algorithm for the remote asynchronous computation of the indirect diffuse component, which is merged with locally-computed direct lighting for a full global illumination solution. The third is a method for precomputing indirect lighting information for dynamically-generated multi-user environments by using the aggregated resources of the clients themselves. The fourth is a novel peer-to-peer system for improving the rendering performance in multi-user environments through the sharing of computation results, propagated via a mechanism based on epidemiology. The results demonstrate that the boundaries of the distributed computing typically used for computer graphics can be significantly and successfully expanded by adapting alternative distributed methods
    corecore