167 research outputs found

    A parallel block-based encryption schema for digital images using reversible cellular automata

    Get PDF
    AbstractWe propose a novel images encryption schema based on reversible one-dimensional cellular automata. Contrasting to the sequential operating mode of several existing approaches, the proposed one is fully parallelizable since the encryption/decryption tasks can be executed using multiple processes running independently for the same single image. The parallelization is made possible by defining a new RCA-based construction of an extended pseudorandom permutation that takes a nonce as a supplementary parameter. The defined PRP exploit the chaotic behavior and the high initial condition's sensitivity of the RCAs to ensure perfect cryptographic security properties. Results of various experiments and analysis show that high security and execution performances can be achieved using the approach, and furthermore, it provides the ability to perform a selective area decryption since any part of the ciphered-image can be deciphered independently from others, which is very useful for real time applications

    Recent Advancements on Symmetric Cryptography Techniques -A Comprehensive Case Study

    Get PDF
    Now a day2019;s Cryptography is one of the broad areas for researchers; because of the conventional block cipher has lost its potency due to the sophistication of modern systems that can break it by brute force. Due to its importance, several cryptography techniques and algorithms are adopted by many authors to secure the data, but still there is a scope to improve the previous approaches. For this necessity, we provide the comprehensive survey which will help the researchers to provide better techniques

    Neural network-based double encrption for JPEG2000 images

    Get PDF
    The JPEG2000 is the more efficient next generation coding standard than the current JPEG standard.It can code files witless visual loss, and the file format is less likely to be affected by system file or bit errors.On the encryption side, the current 128-bit image encryption schemes are reported to be vulnerable to brute force. So there is a need for stronger schemes that not only utilize the efficient coding structure of the JPEG2000, but also apply stronger encryption with better key management.This research investigated a two-layer 256-bit encryption technique proposed for the JPEG2000 compatible images.In the first step, the technique used a multilayer neural network with a 128-bit key to generate single layer encrypted sequences. The second step used a cellular neural network with a different 128-bit key to finally generate a two-layer encrypted image. The projected advantages were compatible with the JPEG2000, 256-bit long key, managing each 128-bit key at separate physical locations, and flexible to opt for a single or a two-layer encryption. In order to test the proposed encryption technique for robustness, randomness tests on random sequences, correlation and histogram tests on encrypted images were conducted.The results show that random sequences pass the NIST statistical tests and the 0/1 balancedness test; the bit sequences are decorrelated, and the histogram of the resulting encrypted images is fairly uniform with the statistical properties of those of the white noise

    A reversible system based on hybrid toggle radius-4 cellular automata and its application as a block cipher

    Full text link
    The dynamical system described herein uses a hybrid cellular automata (CA) mechanism to attain reversibility, and this approach is adapted to create a novel block cipher algorithm called HCA. CA are widely used for modeling complex systems and employ an inherently parallel model. Therefore, applications derived from CA have a tendency to fit very well in the current computational paradigm where scalability and multi-threading potential are quite desirable characteristics. HCA model has recently received a patent by the Brazilian agency INPI. Several evaluations and analyses performed on the model are presented here, such as theoretical discussions related to its reversibility and an analysis based on graph theory, which reduces HCA security to the well-known Hamiltonian cycle problem that belongs to the NP-complete class. Finally, the cryptographic robustness of HCA is empirically evaluated through several tests, including avalanche property compliance and the NIST randomness suite.Comment: 34 pages, 12 figure

    Lightweight image encryption algorithms: design and evaluation

    Get PDF
    Doctor of PhilosophyDepartment of Computer ScienceArslan MunirIn an era dominated by increasing use of multimedia data such as images and videos, ensuring the security and confidentiality of images with real-time encryption is of greatest importance. Traditional encryption algorithms are secure, widely used, and recommended, yet they are not suitable nor computationally efficient for encrypting multimedia data due to the large size and high redundancy inherent in multimedia data. Thus, specialized algorithms for multimedia data encryption are needed. This dissertation explores lightweight image encryption algorithms, specifically designed to address time and resource constraints of realtime image encryption while maintaining the confidentiality and integrity of the multimedia data. The dissertation classifies image encryption based on the techniques used into seven different approaches and analyzes the strengths and weaknesses of each approach. It subsequently introduces and evaluates three novel algorithms designed to encrypt images with low complexity, high efficiency, and reliable security. These algorithms rely on a combination of permutation, substitution, and pseudorandom keystreams to ensure the security of the encrypted images. The first algorithm is based on chaotic systems. The algorithm is implemented using logistic map, permutations, AES S-box, and a plaintext related SHA-2 hash. The second algorithm is based on Trivium cipher. the algorithm is implemented to work on multi-rounds of encryption using pixel-based row and column permutations, and bit-level substitution. For the third algorithm, the Ascon algorithm selected by the National Institute of Standards and Technology (NIST) to standardize lightweight cryptography applications is evaluated for image encryption. To evaluate the proposed algorithms, a comprehensive set of security, quality, and efficiency valuation metrics is utilized to assess the proposed algorithms and compare them to contemporary image encryption algorithms

    Designing substitution boxes based on chaotic map and globalized firefly algorithm

    Get PDF
    Cipher strength mainly depends on the robust structure and a well-designed interaction of the components in its framework. A significant component of a cipher system, which has a significant influence on the strength of the cipher system, is the substitution box or S-box. An S-box is a vital and most essential component of the cipher system due to its direct involvement in providing the system with resistance against certain known and potential cryptanalytic attacks. Hence, research in this area has increased since the late 1980s, but there are still several issues in the design and analysis of the S-boxes for cryptography purposes. Therefore, it is not surprising that the design of suitable S-boxes attracts a lot of attention in the cryptography community. Nonlinearity, bijectivity, strict avalanche criteria, bit independence criteria, differential probability, and linear probability are the major required cryptographic characteristics associated with a strong S-box. Different cryptographic systems requiring certain levels of these security properties. Being that S- boxes can exhibit a certain combination of cryptographic properties at differing rates, the design of a cryptographically strong S-box often requires the establishment of a trade-off between these properties when optimizing the property values. To date, many S-boxes designs have been proposed in the literature, researchers have advocated the adoption of metaheuristic based S-boxes design. Although helpful, no single metaheuristic claim dominance over their other countermeasure. For this reason, the research for a new metaheuristic based S-boxes generation is still a useful endeavour. This thesis aim to provide a new design for 8 × 8 S-boxes based on firefly algorithm (FA) optimization. The FA is a newly developed metaheuristic algorithm inspired by fireflies and their flash lighting process. In this context, the proposed algorithm utilizes a new design for retrieving strong S- boxes based on standard firefly algorithm (SFA). Three variations of FA have been proposed with an aim of improving the generated S-boxes based on the SFA. The first variation of FA is called chaotic firefly algorithm (CFA), which was initialized using discrete chaotic map to enhance the algorithm to start the search from good positions. The second variation is called globalized firefly algorithm (GFA), which employs random movement based on the best firefly using chaotic maps. If a firefly is brighter than its other counterparts, it will not conduct any search. The third variation is called globalized firefly algorithm with chaos (CGFA), which was designed as a combination of CFA initialization and GFA. The obtained result was compared with a previous S-boxes based on optimization algorithms. Overall, the experimental outcome and analysis of the generated S-boxes based on nonlinearity, bit independence criteria, strict avalanche criteria, and differential probability indicate that the proposed method has satisfied most of the required criteria for a robust S-box without compromising any of the required measure of a secure S-box
    • …
    corecore