374 research outputs found

    Comparison of Data Partitioning Schema of Parallel Pairwise Alignment on Shared Memory System

    Get PDF
    The pairwise alignment (PA) algorithm is widely used in bioinformatics to analyze biological sequence. With the advance of sequencer technology, a massive amount of DNA fragments are sequenced much quicker and cheaper. The alignment algorithm needs to be parallelized to be able to align them in a shorter time. Many previous researches have parallelize PA algorithm using various data partitioning schema, but it is unclear which one is the best. The data partitioning schema is important for parallel PA performance, because this algorithm use dynamic programming technique that needs intense inter-thread communication. In this paper, we compared four partitioning schemas to find the best performing one on shared memory system. Those schemas are: blocked columnwise, rowwise, antidiagonal, and blocked columnwise with manual scheduling and loop unrolling. The last schema gave the best performance of 89% efficiency on 4 threads. This result provided fine-grain parallelism that can be used further to develop parallel multiple sequence alignment (MSA)

    Dynamic Multigrain Parallelization on the Cell Broadband Engine

    Get PDF
    This paper addresses the problem of orchestrating and scheduling parallelism at multiple levels of granularity on heterogeneous multicore processors. We present policies and mechanisms for adaptive exploitation and scheduling of multiple layers of parallelism on the Cell Broadband Engine. Our policies combine event-driven task scheduling with malleable loop-level parallelism, which is exposed from the runtime system whenever task-level parallelism leaves cores idle. We present a runtime system for scheduling applications with layered parallelism on Cell and investigate its potential with RAxML, a computational biology application which infers large phylogenetic trees, using the Maximum Likelihood (ML) method. Our experiments show that the Cell benefits significantly from dynamic parallelization methods, that selectively exploit the layers of parallelism in the system, in response to workload characteristics. Our runtime environment outperforms naive parallelization and scheduling based on MPI and Linux by up to a factor of 2.6. We are able to execute RAxML on one Cell four times faster than on a dual-processor system with Hyperthreaded Xeon processors, and 5--10\% faster than on a single-processor system with a dual-core, quad-thread IBM Power5 processor

    Exploring New Search Algorithms and Hardware for Phylogenetics: RAxML Meets the IBM Cell

    Get PDF
    Phylogenetic inference is considered to be one of the grand challenges in Bioinformatics due to the immense computational requirements. RAxML is currently among the fastest and most accurate programs for phylogenetic tree inference under the Maximum Likelihood (ML) criterion. First, we introduce new tree search heuristics that accelerate RAxML by a factor of 2.43 while returning equally good trees. The performance of the new search algorithm has been assessed on 18 real-world datasets comprising 148 up to 4,843 DNA sequences. We then present the implementation, optimization, and evaluation of RAxML on the IBM Cell Broadband Engine. We address the problems and provide solutions pertaining to the optimization of floating point code, control flow, communication, and scheduling of multi-level parallelism on the Cel

    RAxML-Cell: Parallel Phylogenetic Tree Inference on the Cell Broadband Engine

    Get PDF
    Phylogenetic tree reconstruction is one of the grand challenge problems in Bioinformatics. The search for a best-scoring tree with 50 organisms, under a reasonable optimality criterion, creates a topological search space which is as large as the number of atoms in the universe. Computational phylogeny is challenging even for the most powerful supercomputers. It is also an ideal candidate for benchmarking emerging multiprocessor architectures, because it exhibits various levels of fine and coarse-grain parallelism. In this paper, we present the porting, optimization, and evaluation of RAxML on the Cell Broadband Engine. RAxML is a provably efficient, hill climbing algorithm for computing phylogenetic trees based on the Maximum Likelihood (ML) method. The algorithm uses an embarrassingly parallel search method, which also exhibits data-level parallelism and control parallelism in the computation of the likelihood functions. We present the optimization of one of the currently fastest tree search algorithms, on a real Cell blade prototype. We also investigate problems and present solutions pertaining to the optimization of floating point code, control flow, communication, scheduling, and multi-level parallelization on the Cell

    Concurrent and Accurate RNA Sequencing on Multicore Platforms

    Get PDF
    In this paper we introduce a novel parallel pipeline for fast and accurate mapping of RNA sequences on servers equipped with multicore processors. Our software, named HPG-Aligner, leverages the speed of the Burrows-Wheeler Transform to map a large number of RNA fragments (reads) rapidly, as well as the accuracy of the Smith-Waterman algorithm, that is employed to deal with conflictive reads. The aligner is complemented with a careful strategy to detect splice junctions based on the division of RNA reads into short segments (or seeds), which are then mapped onto a number of candidate alignment locations, providing useful information for the successful alignment of the complete reads. Experimental results on platforms with AMD and Intel multicore processors report the remarkable parallel performance of HPG-Aligner, on short and long RNA reads, which excels in both execution time and sensitivity to an state-of-the-art aligner such as TopHat 2 built on top of Bowtie and Bowtie 2
    • …
    corecore