746 research outputs found

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    A Study of Optimal 4-bit Reversible Toffoli Circuits and Their Synthesis

    Full text link
    Optimal synthesis of reversible functions is a non-trivial problem. One of the major limiting factors in computing such circuits is the sheer number of reversible functions. Even restricting synthesis to 4-bit reversible functions results in a huge search space (16! {\approx} 2^{44} functions). The output of such a search alone, counting only the space required to list Toffoli gates for every function, would require over 100 terabytes of storage. In this paper, we present two algorithms: one, that synthesizes an optimal circuit for any 4-bit reversible specification, and another that synthesizes all optimal implementations. We employ several techniques to make the problem tractable. We report results from several experiments, including synthesis of all optimal 4-bit permutations, synthesis of random 4-bit permutations, optimal synthesis of all 4-bit linear reversible circuits, synthesis of existing benchmark functions; we compose a list of the hardest permutations to synthesize, and show distribution of optimal circuits. We further illustrate that our proposed approach may be extended to accommodate physical constraints via reporting LNN-optimal reversible circuits. Our results have important implications in the design and optimization of reversible and quantum circuits, testing circuit synthesis heuristics, and performing experiments in the area of quantum information processing.Comment: arXiv admin note: substantial text overlap with arXiv:1003.191
    • …
    corecore