327 research outputs found

    Parallel preconditioning for sparse linear equations

    Get PDF
    A popular class of preconditioners is known as incomplete factorizations. They can be thought of as approximating the exact LU factorization of a given matrix A (e.g. computed via Gaussian elimination) by disallowing certain ll-ins. As opposed to other PDE-based preconditioners such asmultigrid and domain decomposition, this class of preconditioners are primarily algebraic in nature and can in principle be applied to any sparse matrices. In this paper we will discuss some new viewpoints for the construction of eective preconditioners. In particular, we will discuss parallelization aspects, including re-ordering, series expansion and domain decomposition techniques. Generally, this class of preconditioner does not possess a high degree of parallelism in its original form. Re-ordering and approximations by truncating certain series expansion will increase the parallelism, but usually with a deterioration in convergence rate. Domain decomposition oers a compromise

    An efficient GPU version of the preconditioned GMRES method

    Full text link
    [EN] In a large number of scientific applications, the solution of sparse linear systems is the stage that concentrates most of the computational effort. This situation has motivated the study and development of several iterative solvers, among which preconditioned Krylov subspace methods occupy a place of privilege. In a previous effort, we developed a GPU-aware version of the GMRES method included in ILUPACK, a package of solvers distinguished by its inverse-based multilevel ILU preconditioner. In this work, we study the performance of our previous proposal and integrate several enhancements in order to mitigate its principal bottlenecks. The numerical evaluation shows that our novel proposal can reach important run-time reductions.Aliaga, JI.; Dufrechou, E.; Ezzatti, P.; Quintana-Orti, ES. (2019). An efficient GPU version of the preconditioned GMRES method. The Journal of Supercomputing. 75(3):1455-1469. https://doi.org/10.1007/s11227-018-2658-1S14551469753Aliaga JI, Badia RM, Barreda M, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2016) Exploiting task and data parallelism in ILUPACK’s preconditioned CG solver on NUMA architectures and many-core accelerators. Parallel Comput 54:97–107Aliaga JI, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2016) A data-parallel ILUPACK for sparse general and symmetric indefinite linear systems. In: Lecture Notes in Computer Science, 14th Int. Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms—HeteroPar’16. SpringerAliaga JI, Bollhöfer M, Martín AF, Quintana-Ortí ES (2011) Exploiting thread-level parallelism in the iterative solution of sparse linear systems. Parallel Comput 37(3):183–202Aliaga JI, Bollhöfer M, Martín AF, Quintana-Ortí ES (2012) Parallelization of multilevel ILU preconditioners on distributed-memory multiprocessors. Appl Parallel Sci Comput LNCS 7133:162–172Aliaga JI, Dufrechou E, Ezzatti P, Quintana-Ortí ES (2018) Accelerating a preconditioned GMRES method in massively parallel processors. In: CMMSE 2018: Proceedings of the 18th International Conference on Mathematical Methods in Science and Engineering (2018)Bollhöfer M, Grote MJ, Schenk O (2009) Algebraic multilevel preconditioner for the Helmholtz equation in heterogeneous media. SIAM J Sci Comput 31(5):3781–3805Bollhöfer M, Saad Y (2006) Multilevel preconditioners constructed from inverse-based ILUs. SIAM J Sci Comput 27(5):1627–1650Dufrechou E, Ezzatti P (2018) A new GPU algorithm to compute a level set-based analysis for the parallel solution of sparse triangular systems. In: 2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018, Canada, 2018. IEEE Computer SocietyDufrechou E, Ezzatti P (2018) Solving sparse triangular linear systems in modern GPUs: a synchronization-free algorithm. In: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp 196–203. https://doi.org/10.1109/PDP2018.2018.00034Eijkhout V (1992) LAPACK working note 50: distributed sparse data structures for linear algebra operations. Tech. rep., Knoxville, TN, USAGolub GH, Van Loan CF (2013) Matrix computationsHe K, Tan SXD, Zhao H, Liu XX, Wang H, Shi G (2016) Parallel GMRES solver for fast analysis of large linear dynamic systems on GPU platforms. Integration 52:10–22 http://www.sciencedirect.com/science/article/pii/S016792601500084XLiu W, Li A, Hogg JD, Duff IS, Vinter B (2017) Fast synchronization-free algorithms for parallel sparse triangular solves with multiple right-hand sides. Concurr Comput 29(21)Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, PhiladelphiaSchenk O, Wächter A, Weiser M (2008) Inertia revealing preconditioning for large-scale nonconvex constrained optimization. SIAM J Sci Comput 31(2):939–96

    h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

    Full text link
    In this work we exploit agglomeration based hh-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature hh-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2L^2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.Comment: 78 pages, 7 figure

    Implicit schemes and parallel computing in unstructured grid CFD

    Get PDF
    The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented
    • …
    corecore