12,068 research outputs found

    Enhancing evolutionary algorithms through recombination and parallelism

    Get PDF
    Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.Facultad de Informátic

    Enhancing evolutionary algorithms through recombination and parallelism

    Get PDF
    Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.I Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Enhancing evolutionary algorithms through recombination and parallelism

    Get PDF
    Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.Facultad de Informátic

    Parallelism and evolutionary algorithms

    Full text link

    A Parallel Divide-and-Conquer based Evolutionary Algorithm for Large-scale Optimization

    Full text link
    Large-scale optimization problems that involve thousands of decision variables have extensively arisen from various industrial areas. As a powerful optimization tool for many real-world applications, evolutionary algorithms (EAs) fail to solve the emerging large-scale problems both effectively and efficiently. In this paper, we propose a novel Divide-and-Conquer (DC) based EA that can not only produce high-quality solution by solving sub-problems separately, but also highly utilizes the power of parallel computing by solving the sub-problems simultaneously. Existing DC-based EAs that were deemed to enjoy the same advantages of the proposed algorithm, are shown to be practically incompatible with the parallel computing scheme, unless some trade-offs are made by compromising the solution quality.Comment: 12 pages, 0 figure

    Multi-objective engineering shape optimization using differential evolution interfaced to the Nimrod/O tool

    Get PDF
    This paper presents an enhancement of the Nimrod/O optimization tool by interfacing DEMO, an external multiobjective optimization algorithm. DEMO is a variant of differential evolution – an algorithm that has attained much popularity in the research community, and this work represents the first time that true multiobjective optimizations have been performed with Nimrod/O. A modification to the DEMO code enables multiple objectives to be evaluated concurrently. With Nimrod/O’s support for parallelism, this can reduce the wall-clock time significantly for compute intensive objective function evaluations. We describe the usage and implementation of the interface and present two optimizations. The first is a two objective mathematical function in which the Pareto front is successfully found after only 30 generations. The second test case is the three-objective shape optimization of a rib-reinforced wall bracket using the Finite Element software, Code_Aster. The interfacing of the already successful packages of Nimrod/O and DEMO yields a solution that we believe can benefit a wide community, both industrial and academic

    Performance-based control system design automation via evolutionary computing

    Get PDF
    This paper develops an evolutionary algorithm (EA) based methodology for computer-aided control system design (CACSD) automation in both the time and frequency domains under performance satisfactions. The approach is automated by efficient evolution from plant step response data, bypassing the system identification or linearization stage as required by conventional designs. Intelligently guided by the evolutionary optimization, control engineers are able to obtain a near-optimal ‘‘off-thecomputer’’ controller by feeding the developed CACSD system with plant I/O data and customer specifications without the need of a differentiable performance index. A speedup of near-linear pipelineability is also observed for the EA parallelism implemented on a network of transputers of Parsytec SuperCluster. Validation results against linear and nonlinear physical plants are convincing, with good closed-loop performance and robustness in the presence of practical constraints and perturbations
    corecore