5,760 research outputs found

    Parallel-machine scheduling with simple linear deterioration to minimize total completion time

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Single machine scheduling with job-dependent machine deterioration

    Get PDF
    We consider the single machine scheduling problem with job-dependent machine deterioration. In the problem, we are given a single machine with an initial non-negative maintenance level, and a set of jobs each with a non-preemptive processing time and a machine deterioration. Such a machine deterioration quantifies the decrement in the machine maintenance level after processing the job. To avoid machine breakdown, one should guarantee a non-negative maintenance level at any time point; and whenever necessary, a maintenance activity must be allocated for restoring the machine maintenance level. The goal of the problem is to schedule the jobs and the maintenance activities such that the total completion time of jobs is minimized. There are two variants of maintenance activities: in the partial maintenance case each activity can be allocated to increase the machine maintenance level to any level not exceeding the maximum; in the full maintenance case every activity must be allocated to increase the machine maintenance level to the maximum. In a recent work, the problem in the full maintenance case has been proven NP-hard; several special cases of the problem in the partial maintenance case were shown solvable in polynomial time, but the complexity of the general problem is left open. In this paper we first prove that the problem in the partial maintenance case is NP-hard, thus settling the open problem; we then design a 22-approximation algorithm.Comment: 15 page

    A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines

    Full text link
    This paper presents a novel idea for the general case of the Common Due-Date (CDD) scheduling problem. The problem is about scheduling a certain number of jobs on a single or parallel machines where all the jobs possess different processing times but a common due-date. The objective of the problem is to minimize the total penalty incurred due to earliness or tardiness of the job completions. This work presents exact polynomial algorithms for optimizing a given job sequence for single and identical parallel machines with the run-time complexities of O(nlogn)O(n \log n) for both cases, where nn is the number of jobs. Besides, we show that our approach for the parallel machine case is also suitable for non-identical parallel machines. We prove the optimality for the single machine case and the runtime complexities of both. Henceforth, we extend our approach to one particular dynamic case of the CDD and conclude the chapter with our results for the benchmark instances provided in the OR-library.Comment: Book Chapter 22 page

    A new mathematical model for single machine batch scheduling problem for minimizing maximum lateness with deteriorating jobs

    Get PDF
    This paper presents a mathematical model for the problem of minimizing the maximum lateness on a single machine when the deteriorated jobs are delivered to each customer in various size batches. In reality, this issue may happen within a supply chain in which delivering goods to customers entails cost. Under such situation, keeping completed jobs to deliver in batches may result in reducing delivery costs. In literature review of batch scheduling, minimizing the maximum lateness is known as NP-Hard problem; therefore the present issue aiming at minimizing the costs of delivering, in addition to the aforementioned objective function, remains an NP-Hard problem. In order to solve the proposed model, a Simulation annealing meta-heuristic is used, where the parameters are calibrated by Taguchi approach and the results are compared to the global optimal values generated by Lingo 10 software. Furthermore, in order to check the efficiency of proposed method to solve larger scales of problem, a lower bound is generated. The results are also analyzed based on the effective factors of the problem. Computational study validates the efficiency and the accuracy of the presented model

    Scheduling problems with the effects of deterioration and learning

    Get PDF
    Author name used in this publication: T. C. E. Cheng2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Common Due-Date Problem: Exact Polynomial Algorithms for a Given Job Sequence

    Full text link
    This paper considers the problem of scheduling jobs on single and parallel machines where all the jobs possess different processing times but a common due date. There is a penalty involved with each job if it is processed earlier or later than the due date. The objective of the problem is to find the assignment of jobs to machines, the processing sequence of jobs and the time at which they are processed, which minimizes the total penalty incurred due to tardiness or earliness of the jobs. This work presents exact polynomial algorithms for optimizing a given job sequence or single and parallel machines with the run-time complexities of O(nlogn)O(n \log n) and O(mn2logn)O(mn^2 \log n) respectively, where nn is the number of jobs and mm the number of machines. The algorithms take a sequence consisting of all the jobs (Ji,i=1,2,,n)(J_i, i=1,2,\dots,n) as input and distribute the jobs to machines (for m>1m>1) along with their best completion times so as to get the least possible total penalty for this sequence. We prove the optimality for the single machine case and the runtime complexities of both. Henceforth, we present the results for the benchmark instances and compare with previous work for single and parallel machine cases, up to 200200 jobs.Comment: 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computin

    Single-machine scheduling with deteriorating jobs under a series-parallel graph constraint

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Parallel-Machine Scheduling Problems with Past-Sequence-Dependent Delivery Times and Aging Maintenance

    Get PDF
    We consider parallel-machine scheduling problems with past-sequence-dependent (psd) delivery times and aging maintenance. The delivery time is proportional to the waiting time in the system. Each machine has an aging maintenance activity. We develop polynomial algorithms to three versions of the problem to minimize the total absolute deviation of job completion times, the total load, and the total completion time
    corecore