9,971 research outputs found

    Interferometric gravitational wave detectors vibrational isolation

    Get PDF
    Interferometric Gravitational Wave Detectors, coming online lin late 2000, look for small space strains, leading to apparent motions of test masses of 10-19 m or less; isolation from other forces is crucial. They require a formidable vibration isolation level in a frequency range between few Hz and few kHz. The off-band residual motion must be kept below 10-12 m not to saturate the phase sensors. These exceptional requirements are met, in all degrees of freedom, with a chain of active and passive filters. The key isolation mechanism is the use of mechanical oscillators above their resonant frequencies, pendula horizontally, springs vertically. Very high quality pendular suspensions are needed at the mirror level to limit the thermal noise from fluctuations in the dissipation mechanisms. Off-band electromagnetic actuators on or near the mirror keep its magnitude of attenuation in the longitudinal direction. To provide the bulk of the attenuation, virtually all in the vertical direction, they are suspended from Seismic Noise Attenuation Systems. Attenuation filters, either active or passive, are chained, each providing 2 or 3 orders of magnitude of attenuation. Passive attenuation is obtained with springs and pendula. The vertical is the toughest direction to deal with because the oscillators also fight against gravity. The vertical attenuation requirements, although orthogonal to the beam direction, are only slightly less stringent than the vertical ones due to cross-couplings (Earth curvature is the source of one of them). High internal damping springs organized in hierarchical stacks are used in most early designs. More advanced designs increasingly rely on chains of filters equipped with high quality cantilever springs driven to low resonant frequencies by different mechanisms. The Quality Factors of each resonance are actively and/or passively spoiled at the chain suspension point. IN the latest designs, Ultra Low Frequency Oscillators filter out the microseismic and other low frequency perturbations. This paper addresses one approach to achieving the required seismic isolation level

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Development of an anthropomorphic mobile manipulator with human, machine and environment interaction

    Get PDF
    An anthropomorphic mobile manipulator robot (CHARMIE) is being developed by the University of Minho's Automation and Robotics Laboratory (LAR). The robot gathers sensorial information and processes using neural networks, actuating in real time. The robot's two arms allow object and machine interaction. Its anthropomorphic structure is advantageous since machines are designed and optimized for human interaction. Sound output allows it to relay information to workers and provide feedback. Allying these features with communication with a database or remote operator results in establishment of a bridge between the physical environment and virtual domain. The goal is an increase in information flow and accessibility. This paper presents the current state of the project, intended features and how it can contribute to the development of Industry 4.0. Focus is given to already finished work, detailing the methodology used for two of the robot's subsystems: locomotion system; lower limbs of the robot.- This project has been supported by the ALGORITMI Research Centre of University of Minho's School of Engineering

    Microstructure, defects, and mechanical properties of wire + arc additively manufactured AlCu4.3-Mg1.5 alloy

    Get PDF
    The wire with a composition of AlCu4.3%Mg1.5% was customized and used to deposit the WAAM alloy with the power source of cold metal transfer. The microstructure, defect, and mechanical properties of the as-deposited and heat-treated WAAM alloys were studied. Key findings demonstrated that the microstructure of the as-deposited alloy was characterized by a hierarchical distribution of dendrites, equiaxed grains, and a slight number of columnar grains. The volume fraction of the network-like scattered coarse particles of second phases θ + S reduced by 95% after the T6 heat treatment. With an average microhardness of 161.4 HV, the mean yield strength and ultimate tensile strength of the WAAM alloy increased by 116% and 66% achieving 399 MPa and 485 MPa in the horizontal direction after heat treatment. The precipitation of a high density of needle-shaped metastable S′ precipitates was responsible for the significantly enhanced mechanical properties. However, this WAAM alloy has exhibited an anisotropic tensile property. A considerable number of sharp-angled defects like linear and chain-like micropores, which generally depress the mechanical properties, were formed in the WAAM alloys

    Combination of metabolomic and proteomic analysis revealed different features among Lactobacillus delbrueckii subspecies bulgaricus and lactis strains while in vivo testing in the model organism Caenorhabditis elegans highlighted probiotic properties

    Get PDF
    Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus, lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans, with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis. Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates
    corecore