2,863 research outputs found

    Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    Get PDF
    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is dis-cretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence

    Thermodynamic Conditions in Quenching Chamber of Low Voltage Circuit Breaker

    Get PDF
    Práce se zabývá studiem procesů probíhajících při zhášení silnoproudého oblouku ve zhášecí komoře jističe. Je zaměřena na výpočet dynamiky tekutin a teplotního pole v okolí elektrického oblouku. V práci je dále popsán vliv vzdálenosti plechů v komoře a vliv tvarů plechů z hlediska aerodynamických podmínek uvnitř komory. Dalším cílem dosaženým touto prací je poskytnutí informací o vlivu polohy elektrického oblouku na termodynamické vlastnosti uvnitř komory. Toto je důležité, zejména pokud je oblouk do komory vtahován jinými silami, např. elektromagnetickými a během tohoto vtahovacího procesu mění svůj tvar i polohu. Za účelem co nejjednoduššího, ale zároveň co nejefektivnějšího řešení úkolu, byl vyvinut software určen speciálně pro výpočet dynamiky tekutin numerickou metodou konečných objemů (FVM). Tato metoda je, v porovnání s rozšířenější metodou konečných prvků (FEM), vhodnější pro výpočet dynamiky tekutin (CFD) zejména proto, že režie na výpočet jedné iterace jsou menší v porovnání s ostatními numerickými metodami. Další výhodou tohoto softwarového řešení je jeho modularita a rozšiřitelnost. Cely koncept softwaru je postaven na tzv. zásuvných modulech. Díky tomuto řešení můžeme využít výpočtové jádro pro další numerické analýzy, např. strukturální, elektromagnetickou apod. Jediná potřeba pro úspěšné používání těchto analýz je napsáni solveru pro konečné prvky (FEM). Jelikož je software koncipován jako multi–thread aplikace, využívá výkon současných vícejádrových procesorů naplno. Tato vlastnost se ještě více projeví, pokud se výpočet přesune z CPU na GPU. Jelikož současné grafické karty vyšších tříd mají několik desítek až stovek výpočetních jader a pracují s mnohem rychlejšími pamětmi, než CPU, je výpočetní výkon několikanásobně vyšší.Work deals with the study of processes that attend the electric arc extinction inside the quenching chamber of a circuit breaker. It is focused on several areas. The first one is concerned to fluid dynamics calculations (CFD) and the second one is aimed at thermal field calculations. In this work effects of metal plates distance together with metal plates shapes are described from aerodynamical point of view. Another objective solved by this work is to give information about influence of an electric arc position in a quenching chamber, which changed its shape due to forces acting on it during extinction process. For purpose of this work a new software solution for CFD was developed. Whole software concept is based on plug-ins. Due to this solution, the software§s calculation core can be used for other numerical analyses, like structural, electromagnetic, etc. The only requirement is to write a plug-in for these analyses. Because the software is designed as multi-threaded application, it can use the fully performance of current multi-core processors. Above mentioned property can be especially shown off, when a calculation is moved from CPU to GPU (Graphics Processing Units). Current high-end graphic cards have tens to hundreds cores and work with faster memories than CPU. Due to this fact, the simulation performance can raised manifold.

    A finite-volume module for simulating global all-scale atmospheric flows

    Get PDF
    The paper documents the development of a global nonhydrostatic finite-volume module designed to enhance an established spectral-transform based numerical weather prediction (NWP) model. The module adheres to NWP standards, with formulation of the governing equations based on the classical meteorological latitude-longitude spherical framework. In the horizontal, a bespoke unstructured mesh with finite-volumes built about the reduced Gaussian grid of the existing NWP model circumvents the notorious stiffness in the polar regions of the spherical framework. All dependent variables are co-located, accommodating both spectral-transform and grid-point solutions at the same physical locations. In the vertical, a uniform finite-difference discretisation facilitates the solution of intricate elliptic problems in thin spherical shells, while the pliancy of the physical vertical coordinate is delegated to generalised continuous transformations between computational and physical space. The newly developed module assumes the compressible Euler equations as default, but includes reduced soundproof PDEs as an option. Furthermore, it employs semi-implicit forward-in-time integrators of the governing PDE systems, akin to but more general than those used in the NWP model. The module shares the equal regions parallelisation scheme with the NWP model, with multiple layers of parallelism hybridising MPI tasks and OpenMP threads. The efficacy of the developed nonhydrostatic module is illustrated with benchmarks of idealised global weather

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    Numerical analysis of conservative unstructured discretisations for low Mach flows

    Get PDF
    This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. https://authorservices.wiley.com/author-resources/Journal-Authors/licensing-and-open-access/open-access/self-archiving.htmlUnstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low-Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell centred velocity reconstructions the standard first-order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd-even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable-density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy preserving scheme is applied to the momentum equations, namely the Symmetry-Preserving (SP) scheme. Furthermore, a new approach to define the far-neighbouring nodes of the QUICK scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self-igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable-density flows. Furthermore, the QUICK schemes shows close to second order behaviour on unstructured meshes and the SP is reliably used in all computations.Peer ReviewedPostprint (author's final draft
    corecore