10,505 research outputs found

    Computing transitive closure on systolic arrays of fixed size

    Get PDF
    Forming the transitive closure of a binary relation (or directed graph) is an important part of many algorithms. When the relation is represented by a bit matrix, the transitive closure can be efficiently computed in parallel in a systolic array. Various such arrays for computing the transitive closure have been proposed. They all have in common, though, that the size of the array must be proportional to the number of nodes. Here we propose two ways of computing the transitive closure of an arbitrarily big graph on a systolic array of fixed size. The first method is a simple partitioning of a well-known systolic algorithm for computing the transitive closure. The second is a block-structured algorithm for computing the transitive closure. This algorithm is suitable for execution on a systolic array, that can multiply fixed size bit matrices and compute transitive closure of graphs with a fixed number of nodes. The algorithm is, however, not limited to systolic array implementations; it works on any parallel architecture that can form the transitive closure and product of fixed-size bit matrices efficiently. The shortest path problem, for directed graphs with weighted edges, can also be solved for arbitrarily large graphs on a fixed-size systolic array in the same manner, devised above, as the transitive closure is computed

    A survey of parallel execution strategies for transitive closure and logic programs

    Get PDF
    An important feature of database technology of the nineties is the use of parallelism for speeding up the execution of complex queries. This technology is being tested in several experimental database architectures and a few commercial systems for conventional select-project-join queries. In particular, hash-based fragmentation is used to distribute data to disks under the control of different processors in order to perform selections and joins in parallel. With the development of new query languages, and in particular with the definition of transitive closure queries and of more general logic programming queries, the new dimension of recursion has been added to query processing. Recursive queries are complex; at the same time, their regular structure is particularly suited for parallel execution, and parallelism may give a high efficiency gain. We survey the approaches to parallel execution of recursive queries that have been presented in the recent literature. We observe that research on parallel execution of recursive queries is separated into two distinct subareas, one focused on the transitive closure of Relational Algebra expressions, the other one focused on optimization of more general Datalog queries. Though the subareas seem radically different because of the approach and formalism used, they have many common features. This is not surprising, because most typical Datalog queries can be solved by means of the transitive closure of simple algebraic expressions. We first analyze the relationship between the transitive closure of expressions in Relational Algebra and Datalog programs. We then review sequential methods for evaluating transitive closure, distinguishing iterative and direct methods. We address the parallelization of these methods, by discussing various forms of parallelization. Data fragmentation plays an important role in obtaining parallel execution; we describe hash-based and semantic fragmentation. Finally, we consider Datalog queries, and present general methods for parallel rule execution; we recognize the similarities between these methods and the methods reviewed previously, when the former are applied to linear Datalog queries. We also provide a quantitative analysis that shows the impact of the initial data distribution on the performance of methods

    Data fragmentation for parallel transitive closure strategies

    Get PDF
    Addresses the problem of fragmenting a relation to make the parallel computation of the transitive closure efficient, based on the disconnection set approach. To better understand this design problem, the authors focus on transportation networks. These are characterized by loosely interconnected clusters of nodes with a high internal connectivity rate. Three requirements that have to be fulfilled by a fragmentation are formulated, and three different fragmentation strategies are presented, each emphasizing one of these requirements. Some test results are presented to show the performance of the various fragmentation strategie

    A Study of Transitive Closure based Loop Transformation Techniques of Affine Integer Relations for Coarse Grain Parallelism

    Get PDF
    This thesis focuses on computation of transitive closure of affine integer tuple relations and its effect on improvement on run time of the resultant parallelized programs. Scalability issues of the computation are also discussed. Different strategies are used by automatic parallelization compilers to find statements that can be executed in parallel. Most of the current approaches like Pluto [1] and Polly [2] use linear/integer- linear programming based techniques as a means to do the same. An emerging alternative is to use the transitive closure to do the same. The transitive closure based methods are different in strategy and complexity with compared with methods that use the linear programming based approaches. Traco [3] is a source to source transformation tool which tries to find slices of program that can be executed in parallel using Transitive Closure. Polly [2] is a branch of LLVM which uses scanning of AST to obtain independent dimension of iteration vector. Both Traco and Polly use OpenMP [4] pragmas to show detected parallelism. We do a comparative study of Traco and Polly to extract coarse grained parallelization. We suggest important modifications to Polly’s algorithm of dependence extraction. We show limitations of the Traco compiler on various fronts: limitations in extracting parallelism, scalability because of dependence on transitive closure etc

    Efficient parallel computation on multiprocessors with optical interconnection networks

    Get PDF
    This dissertation studies optical interconnection networks, their architecture, address schemes, and computation and communication capabilities. We focus on a simple but powerful optical interconnection network model - the Linear Array with Reconfigurable pipelined Bus System (LARPBS). We extend the LARPBS model to a simplified higher dimensional LAPRBS and provide a set of basic computation operations. We then study the following two groups of parallel computation problems on both one dimensional LARPBS\u27s as well as multi-dimensional LARPBS\u27s: parallel comparison problems, including sorting, merging, and selection; Boolean matrix multiplication, transitive closure and their applications to connected component problems. We implement an optimal sorting algorithm on an n-processor LARPBS. With this optimal sorting algorithm at disposal, we study the sorting problem for higher dimensional LARPBS\u27s and obtain the following results: • An optimal basic Columnsort algorithm on a 2D LARPBS. • Two optimal two-way merge sort algorithms on a 2D LARPBS. • An optimal multi-way merge sorting algorithm on a 2D LARPBS. • An optimal generalized column sort algorithm on a 2D LARPBS. • An optimal generalized column sort algorithm on a 3D LARPBS. • An optimal 5-phase sorting algorithm on a 3D LARPBS. Results for selection problems are as follows: • A constant time maximum-finding algorithm on an LARPBS. • An optimal maximum-finding algorithm on an LARPBS. • An O((log log n)2) time parallel selection algorithm on an LARPBS. • An O(k(log log n)2) time parallel multi-selection algorithm on an LARPBS. While studying the computation and communication properties of the LARPBS model, we find Boolean matrix multiplication and its applications to the graph are another set of problem that can be solved efficiently on the LARPBS. Following is a list of results we have obtained in this area. • A constant time Boolean matrix multiplication algorithm. • An O(log n)-time transitive closure algorithm. • An O(log n)-time connected components algorithm. • An O(log n)-time strongly connected components algorithm. The results provided in this dissertation show the strong computation and communication power of optical interconnection networks

    Algebraic optimization of recursive queries

    Get PDF
    Over the past few years, much attention has been paid to deductive databases. They offer a logic-based interface, and allow formulation of complex recursive queries. However, they do not offer appropriate update facilities, and do not support existing applications. To overcome these problems an SQL-like interface is required besides a logic-based interface.\ud \ud In the PRISMA project we have developed a tightly-coupled distributed database, on a multiprocessor machine, with two user interfaces: SQL and PRISMAlog. Query optimization is localized in one component: the relational query optimizer. Therefore, we have defined an eXtended Relational Algebra that allows recursive query formulation and can also be used for expressing executable schedules, and we have developed algebraic optimization strategies for recursive queries. In this paper we describe an optimization strategy that rewrites regular (in the context of formal grammars) mutually recursive queries into standard Relational Algebra and transitive closure operations. We also describe how to push selections into the resulting transitive closure operations.\ud \ud The reason we focus on algebraic optimization is that, in our opinion, the new generation of advanced database systems will be built starting from existing state-of-the-art relational technology, instead of building a completely new class of systems
    corecore