7,101 research outputs found

    Multiobjective scheduling for semiconductor manufacturing plants

    Get PDF
    Scheduling of semiconductor wafer manufacturing system is identified as a complex problem, involving multiple and conflicting objectives (minimization of facility average utilization, minimization of waiting time and storage, for instance) to simultaneously satisfy. In this study, we propose an efficient approach based on an artificial neural network technique embedded into a multiobjective genetic algorithm for multi-decision scheduling problems in a semiconductor wafer fabrication environment

    Aerospace Manufacturing Industry: A Simulation-Based Decision Support Framework for the Scheduling of Complex Hoist Lines

    Get PDF
    The hoist scheduling problem is a critical issue in the design and control of Automated Manufacturing Systems. To deal with the major complexities appearing in such problem, this work introduces an advanced simulation model to represent the short-term scheduling of complex hoist lines. The aim is to find the best jobs schedule that minimizing the makespan while maximizing throughput with no defective outputs. Several hard constraints are considered in the model: single shared hoist, heterogeneous recipes, eventual recycles flows, and no buffers between workstations. Different heuristic-based strategies are incorporated into the computer model in order to improve the solutions generated over time. The alternative solutions can be quickly evaluated by using a graphical user interface developed together with the simulation model.Fil: Basán, Natalia Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Pulido, Raul. Universidad Politécnica de Madrid; EspañaFil: Coccola, Mariana Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin

    Genetic Algorithm for Job Scheduling with Maintenance Consideration in Semiconductor Manufacturing Process

    Get PDF
    This paper presents wafer sequencing problems considering perceived chamber conditions and maintenance activities in a single cluster tool through the simulation-based optimization method. We develop optimization methods which would lead to the best wafer release policy in the chamber tool to maximize the overall yield of the wafers in semiconductor manufacturing system. Since chamber degradation will jeopardize wafer yields, chamber maintenance is taken into account for the wafer sequence decision-making process. Furthermore, genetic algorithm is modified for solving the scheduling problems in this paper. As results, it has been shown that job scheduling has to be managed based on the chamber degradation condition and maintenance activities to maximize overall wafer yield.open

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Scheduling of Batch Processors in Semiconductor Manufacturing – A Review

    Get PDF
    In this paper a review on scheduling of batch processors (SBP) in semiconductor manufacturing (SM) is presented. It classifies SBP in SM into 12 groups. The suggested classification scheme organizes the SBP in SM literature, summarizes the current research results for different problem types. The classification results are presented based on various distributions and various methodologies applied for SBP in SM are briefly highlighted. A comprehensive list of references is presented. It is hoped that, this review will provide a source for other researchers/readers interested in SBP in SM research and help simulate further interest.Singapore-MIT Alliance (SMA

    Cycle Time Analysis For Photolithography Tools In Semiconductor Manufacturing Industry With Simulation Model : A Case Study [TR940. S618 2008 f rb].

    Get PDF
    Perkembangan industri semikonduktor dalam bidang fabrikasi biasanya melibatkan kos pelaburan yang tinggi terutamanya dalam alatan photolithography. The industry of semiconductor wafer fabrication (“fab”) has invested a huge amount of capital on the manufacturing equipments particular in photolithograph

    Quality based scheduling for an example of semiconductor manufactory

    Get PDF
    Quality is an important measurement within a semiconductor manufactory. Due to the fact that yield is directly affected by quality of the manufacturing process, in this paper a quality based scheduling approach will be presented which compares different methods like dispatching, MIP and CP, regarding different objectives. To test the different used methods a benchmark model of a semiconductor manufactory is build up. Here a lithography work center is used in detail where the rest of the fabrication is only build up as a delay station. With this model the repeatability for the example of a lithography step is investigated. Thereby in this investigation it is assumed, that each lithography tool has an offset which is transferred to the structure. Now the quality of a product should be best, if the offset from one layer to the next layer is minimized
    corecore