8 research outputs found

    Efficient fault tolerance for selected scientific computing algorithms on heterogeneous and approximate computer architectures

    Get PDF
    Scientific computing and simulation technology play an essential role to solve central challenges in science and engineering. The high computational power of heterogeneous computer architectures allows to accelerate applications in these domains, which are often dominated by compute-intensive mathematical tasks. Scientific, economic and political decision processes increasingly rely on such applications and therefore induce a strong demand to compute correct and trustworthy results. However, the continued semiconductor technology scaling increasingly imposes serious threats to the reliability and efficiency of upcoming devices. Different reliability threats can cause crashes or erroneous results without indication. Software-based fault tolerance techniques can protect algorithmic tasks by adding appropriate operations to detect and correct errors at runtime. Major challenges are induced by the runtime overhead of such operations and by rounding errors in floating-point arithmetic that can cause false positives. The end of Dennard scaling induces central challenges to further increase the compute efficiency between semiconductor technology generations. Approximate computing exploits the inherent error resilience of different applications to achieve efficiency gains with respect to, for instance, power, energy, and execution times. However, scientific applications often induce strict accuracy requirements which require careful utilization of approximation techniques. This thesis provides fault tolerance and approximate computing methods that enable the reliable and efficient execution of linear algebra operations and Conjugate Gradient solvers using heterogeneous and approximate computer architectures. The presented fault tolerance techniques detect and correct errors at runtime with low runtime overhead and high error coverage. At the same time, these fault tolerance techniques are exploited to enable the execution of the Conjugate Gradient solvers on approximate hardware by monitoring the underlying error resilience while adjusting the approximation error accordingly. Besides, parameter evaluation and estimation methods are presented that determine the computational efficiency of application executions on approximate hardware. An extensive experimental evaluation shows the efficiency and efficacy of the presented methods with respect to the runtime overhead to detect and correct errors, the error coverage as well as the achieved energy reduction in executing the Conjugate Gradient solvers on approximate hardware

    Algorithmic and Technical Improvements for Next Generation Drug Design Software Tools

    Get PDF
    [eng] The pharmaceutical industry is actively looking for new ways of boosting the efficiency and effectiveness of their R&D programmes. The extensive use of computational modeling tools in the drug discovery pipeline (DDP) is having a positive impact on research performance, since in silico experiments are usually faster and cheaper that their real counterparts. The lead identification step is a very sensitive point in the DDP. In this context, Virtual high-throughput screening techniques (VHTS) work as a filtering mecha-nism that benefits the following stages by reducing the number of compounds to be tested experimentally. Unfortunately the simplifications applied in the VHTS docking software make them prone generate false positives and negatives. These errors spread across the rest of the DDP stages, and have a negative impact in terms of financial and time costs. In the Electronic and Atomic Protein Modelling group (Barcelona Supercomputing Center, Life Sciences department), we have developed the Protein Energy Landscape Exploration (PELE) software. PELE has demonstrated to be a good alternative to explore the conformational space of proteins and perform ligand-protein docking simulations. In this thesis we discuss how to turn PELE into a faster and more efficient tool by improving its technical and algorithmic features, so that it can be eventually used in VHTS protocols. Besides, we have addressed the difficulties of analyzing extensive data associated with massive simulation production. First, we have rewritten the software using C++ and modern software engineering techniques. As a consequence, our code base is now well organized and tested. PELE has become a piece of software which is easier to modify, understand, and extend. It is also more robust and reliable. The rewriting the code has helped us to overcome some of its previous technical limitations, such as the restrictions on the size of the systems. Also, it has allowed us to extend PELE with new solvent models, force fields, and types of biomolecules. Moreover, the rewriting has make it possible to adapt the code in order to take advantage of new parallel architectures and accelerators obtaining promising speedup results. Second, we have improved the way PELE handles protein flexibility by im-plemented and internal coordinate Normal Mode Analysis (icNMA) method. This method is able to produce more energy favorable perturbations than the current Anisotropic Network Model (ANM) based strategy. This has allowed us to eliminate the unneeded relaxation phase of PELE. As a consequence, the overall computational performance of the sampling is significantly improved (-5-7x). The new internal coordinates-based methodology is able to capture the flexibility of the backbone better than the old method and is in closer agreement to molecular dynamics than the ANM-based method

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    GSI Scientific Report 2009 [GSI Report 2010-1]

    Get PDF
    Displacement design response spectrum is an essential component for the currently-developing displacement-based seismic design and assessment procedures. This paper proposes a new and simple method for constructing displacement design response spectra on soft soil sites. The method takes into account modifications of the seismic waves by the soil layers, giving due considerations to factors such as the level of bedrock shaking, material non-linearity, seismic impedance contrast at the interface between soil and bedrock, and plasticity of the soil layers. The model is particularly suited to applications in regions with a paucity of recorded strong ground motion data, from which empirical models cannot be reliably developed

    GSI Scientific Report 2009 [GSI Report 2010-1]

    Get PDF
    corecore