14,609 research outputs found

    Deep Learning: Our Miraculous Year 1990-1991

    Full text link
    In 2020, we will celebrate that many of the basic ideas behind the deep learning revolution were published three decades ago within fewer than 12 months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich. Back then, few people were interested, but a quarter century later, neural networks based on these ideas were on over 3 billion devices such as smartphones, and used many billions of times per day, consuming a significant fraction of the world's compute.Comment: 37 pages, 188 references, based on work of 4 Oct 201

    E-PUR: An Energy-Efficient Processing Unit for Recurrent Neural Networks

    Full text link
    Recurrent Neural Networks (RNNs) are a key technology for emerging applications such as automatic speech recognition, machine translation or image description. Long Short Term Memory (LSTM) networks are the most successful RNN implementation, as they can learn long term dependencies to achieve high accuracy. Unfortunately, the recurrent nature of LSTM networks significantly constrains the amount of parallelism and, hence, multicore CPUs and many-core GPUs exhibit poor efficiency for RNN inference. In this paper, we present E-PUR, an energy-efficient processing unit tailored to the requirements of LSTM computation. The main goal of E-PUR is to support large recurrent neural networks for low-power mobile devices. E-PUR provides an efficient hardware implementation of LSTM networks that is flexible to support diverse applications. One of its main novelties is a technique that we call Maximizing Weight Locality (MWL), which improves the temporal locality of the memory accesses for fetching the synaptic weights, reducing the memory requirements by a large extent. Our experimental results show that E-PUR achieves real-time performance for different LSTM networks, while reducing energy consumption by orders of magnitude with respect to general-purpose processors and GPUs, and it requires a very small chip area. Compared to a modern mobile SoC, an NVIDIA Tegra X1, E-PUR provides an average energy reduction of 92x

    The Microsoft 2016 Conversational Speech Recognition System

    Full text link
    We describe Microsoft's conversational speech recognition system, in which we combine recent developments in neural-network-based acoustic and language modeling to advance the state of the art on the Switchboard recognition task. Inspired by machine learning ensemble techniques, the system uses a range of convolutional and recurrent neural networks. I-vector modeling and lattice-free MMI training provide significant gains for all acoustic model architectures. Language model rescoring with multiple forward and backward running RNNLMs, and word posterior-based system combination provide a 20% boost. The best single system uses a ResNet architecture acoustic model with RNNLM rescoring, and achieves a word error rate of 6.9% on the NIST 2000 Switchboard task. The combined system has an error rate of 6.2%, representing an improvement over previously reported results on this benchmark task

    Twin Networks: Matching the Future for Sequence Generation

    Full text link
    We propose a simple technique for encouraging generative RNNs to plan ahead. We train a "backward" recurrent network to generate a given sequence in reverse order, and we encourage states of the forward model to predict cotemporal states of the backward model. The backward network is used only during training, and plays no role during sampling or inference. We hypothesize that our approach eases modeling of long-term dependencies by implicitly forcing the forward states to hold information about the longer-term future (as contained in the backward states). We show empirically that our approach achieves 9% relative improvement for a speech recognition task, and achieves significant improvement on a COCO caption generation task.Comment: 12 pages, 3 figures, published at ICLR 201
    • …
    corecore