3,786 research outputs found

    From Big Data to Big Displays: High-Performance Visualization at Blue Brain

    Full text link
    Blue Brain has pushed high-performance visualization (HPV) to complement its HPC strategy since its inception in 2007. In 2011, this strategy has been accelerated to develop innovative visualization solutions through increased funding and strategic partnerships with other research institutions. We present the key elements of this HPV ecosystem, which integrates C++ visualization applications with novel collaborative display systems. We motivate how our strategy of transforming visualization engines into services enables a variety of use cases, not only for the integration with high-fidelity displays, but also to build service oriented architectures, to link into web applications and to provide remote services to Python applications.Comment: ISC 2017 Visualization at Scale worksho

    A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units

    Get PDF
    Agent-based modeling is a technique for modeling dynamic systems from the bottom up. Individual elements of the system are represented computationally as agents. The system-level behaviors emerge from the micro-level interactions of the agents. Contemporary state-of-the-art agent-based modeling toolkits are essentially discrete-event simulators designed to execute serially on the Central Processing Unit (CPU). They simulate Agent-Based Models (ABMs) by executing agent actions one at a time. In addition to imposing an un-natural execution order, these toolkits have limited scalability. In this article, we investigate data-parallel computer architectures such as Graphics Processing Units (GPUs) to simulate large scale ABMs. We have developed a series of efficient, data parallel algorithms for handling environment updates, various agent interactions, agent death and replication, and gathering statistics. We present three fundamental innovations that provide unprecedented scalability. The first is a novel stochastic memory allocator which enables parallel agent replication in O(1) average time. The second is a technique for resolving precedence constraints for agent actions in parallel. The third is a method that uses specialized graphics hardware, to gather and process statistical measures. These techniques have been implemented on a modern day GPU resulting in a substantial performance increase. We believe that our system is the first ever completely GPU based agent simulation framework. Although GPUs are the focus of our current implementations, our techniques can easily be adapted to other data-parallel architectures. We have benchmarked our framework against contemporary toolkits using two popular ABMs, namely, SugarScape and StupidModel.GPGPU, Agent Based Modeling, Data Parallel Algorithms, Stochastic Simulations

    Memory sharing for interactive ray tracing on clusters

    Get PDF
    ManuscriptWe present recent results in the application of distributed shared memory to image parallel ray tracing on clusters. Image parallel rendering is traditionally limited to scenes that are small enough to be replicated in the memory of each node, because any processor may require access to any piece of the scene. We solve this problem by making all of a cluster's memory available through software distributed shared memory layers. With gigabit ethernet connections, this mechanism is sufficiently fast for interactive rendering of multi-gigabyte datasets. Object- and page-based distributed shared memories are compared, and optimizations for efficient memory use are discussed

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented

    Interactive Vegetation Rendering with Slicing and Blending

    Get PDF
    Detailed and interactive 3D rendering of vegetation is one of the challenges of traditional polygon-oriented computer graphics, due to large geometric complexity even of simple plants. In this paper we introduce a simplified image-based rendering approach based solely on alpha-blended textured polygons. The simplification is based on the limitations of human perception of complex geometry. Our approach renders dozens of detailed trees in real-time with off-the-shelf hardware, while providing significantly improved image quality over existing real-time techniques. The method is based on using ordinary mesh-based rendering for the solid parts of a tree, its trunk and limbs. The sparse parts of a tree, its twigs and leaves, are instead represented with a set of slices, an image-based representation. A slice is a planar layer, represented with an ordinary alpha or color-keyed texture; a set of parallel slices is a slicing. Rendering from an arbitrary viewpoint in a 360 degree circle around the center of a tree is achieved by blending between the nearest two slicings. In our implementation, only 6 slicings with 5 slices each are sufficient to visualize a tree for a moving or stationary observer with the perceptually similar quality as the original model
    corecore