2,393 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Southern Adventist University Undergraduate Catalog 2023-2024

    Get PDF
    Southern Adventist University\u27s undergraduate catalog for the academic year 2023-2024.https://knowledge.e.southern.edu/undergrad_catalog/1123/thumbnail.jp

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Climate Change and Critical Agrarian Studies

    Full text link
    Climate change is perhaps the greatest threat to humanity today and plays out as a cruel engine of myriad forms of injustice, violence and destruction. The effects of climate change from human-made emissions of greenhouse gases are devastating and accelerating; yet are uncertain and uneven both in terms of geography and socio-economic impacts. Emerging from the dynamics of capitalism since the industrial revolution — as well as industrialisation under state-led socialism — the consequences of climate change are especially profound for the countryside and its inhabitants. The book interrogates the narratives and strategies that frame climate change and examines the institutionalised responses in agrarian settings, highlighting what exclusions and inclusions result. It explores how different people — in relation to class and other co-constituted axes of social difference such as gender, race, ethnicity, age and occupation — are affected by climate change, as well as the climate adaptation and mitigation responses being implemented in rural areas. The book in turn explores how climate change – and the responses to it - affect processes of social differentiation, trajectories of accumulation and in turn agrarian politics. Finally, the book examines what strategies are required to confront climate change, and the underlying political-economic dynamics that cause it, reflecting on what this means for agrarian struggles across the world. The 26 chapters in this volume explore how the relationship between capitalism and climate change plays out in the rural world and, in particular, the way agrarian struggles connect with the huge challenge of climate change. Through a huge variety of case studies alongside more conceptual chapters, the book makes the often-missing connection between climate change and critical agrarian studies. The book argues that making the connection between climate and agrarian justice is crucial

    Fluidic Nozzles for Automotive Washer Systems: Computational Fluid Dynamics and Experimental Analysis

    Get PDF
    One of the main goals of this project was to cultivate an understanding of fluidic nozzle geometries and characteristic flow. Through this knowledge, three new fluidic nozzle concepts were developed to be used as components in several windscreen washer systems for an automotive part supplier, Kautex Textron CVS Ltd.Accurate and conclusive visualisation of flow through fluidic nozzles was vital in understanding how they can be best utilised for different applications. Over the past century, the specific needs of automotive cleaning systems have greatly developed with new technological discoveries, these advances allow the driver further knowledge of their surroundings. These specialised systems each require a different type of maintenance and cleaning system depending on their usage and the different size and shape of the vehicle. By completing this project, it is hoped to allow manufacturers to accurately identify what sort of fluidic nozzles are best for windscreen cleaning systems for a vehicle and how to design a nozzle to suit their specification. Fluidic nozzles have been researched experimentally and computationally to ensure an accurate comparison of results. By guaranteeing a precise comparison it will negate the need for high volume testing of nozzles in experimental situations, greatly reducing time and resources required to analyse a fluidic nozzle.The fluidic nozzles that are investigated and developed in this project were modelled and examined both experimentally and computationally, this ensured valid and accurate results were achieved by both the computational modelling and experimental testing. The development of the nozzles within this project was conducted using several experimental and computational setups to analyse the spray distribution, angle and oscillatory frequency amongst other parameters significant to the nozzle usage on a vehicle. Through this it was possible to tailor nozzle dimensions to allow for a streamlined design approach, this increased efficiency in fluidic nozzle development for any specification given by a vehicle manufacturing company customer. In addition to this the water flow emitted from the outlet was experimentally tested and modelled with both stationary and high surrounding velocities to examine how external variables affect the flow of the water from the nozzle.iiiThis project has been useful in the design manufacturing process of fluidic nozzles, by utilising computational modelling it has allowed a faster and cheaper method of analysing the effect of design alterations to fluidic nozzles. There is a greatly reduced frequency required for rapid prototyping of an array of fluidic chips with minimal dimensional differences to be used in the experimental stages of design, as once the inlet boundary conditions are established the nozzle can be redesigned completely within reason without the need for additional material wastage. This ensures a more easy and precise method of testing the manufacturing tolerances of a fluidic nozzle with a target of reaching customer specifications are always achieved.Three nozzles were aimed developed to satisfy conditions set by the customers, the vehicle manufacturers at which the new nozzle designs are aimed at are Honda, Nissan and Toyota. The nozzles to be established were designed for use on windscreen washer systems with a varying number of nozzles and with diverse windscreen sizes for different vehicles, resulting in a wide variety of specifications that must be met for each vehicle manufacturer. This meant that a single nozzle could not be utilised for all vehicles, instead a base model of fluidic chip was developed for the Nissan vehicle which was then dimensionally changed to suit the other vehicles.Throughout this project there were design specifications changes and ambiguities from the automotive company customers, leading to redesigns of the fluidic chips designed in this project. This means that although only two of the three fluidic nozzle designs are successfully in production, a much greater understanding of the mechanics of the fluid flow within the fluidic nozzle was achieved

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Comparison of different methods for shaping amorphous solid dispersions

    Full text link

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings
    • …
    corecore