801,066 research outputs found

    A Platform-independent Programming Environment for Robot Control

    Full text link
    The development of robot control programs is a complex task. Many robots are different in their electrical and mechanical structure which is also reflected in the software. Specific robot software environments support the program development, but are mainly text-based and usually applied by experts in the field with profound knowledge of the target robot. This paper presents a graphical programming environment which aims to ease the development of robot control programs. In contrast to existing graphical robot programming environments, our approach focuses on the composition of parallel action sequences. The developed environment allows to schedule independent robot actions on parallel execution lines and provides mechanism to avoid side-effects of parallel actions. The developed environment is platform-independent and based on the model-driven paradigm. The feasibility of our approach is shown by the application of the sequencer to a simulated service robot and a robot for educational purpose

    Methods for design and evaluation of integrated hardware/software systems for concurrent computation

    Get PDF
    Two testbed programming environments to support the evaluation of a large range of parallel architectures have been implemented under the program Parallel Implementation of Scientific Computing Environments (PISCES). The PISCES 1 environment was applied to two areas of aerospace interest: a sparse matrix iterative equation solver and a dynamic scene analysis system. Currently, the NICE/SPAR testbed system for structural analysis is being modified for parallel operation under PISCES 2; the PISCES 1 applications are also being adapted for PISCES 2. A new formal model of concurrent computation has been developed, based on the mathematical system known as H graph semantics together with a timed Petri net model of the parallel aspects of a system

    An engineering approach to automatic programming

    Get PDF
    An exploratory study of the automatic generation and optimization of symbolic programs using DECOM - a prototypical requirement specification model implemented in pure LISP was undertaken. It was concluded, on the basis of this study, that symbolic processing languages such as LISP can support a style of programming based upon formal transformation and dependent upon the expression of constraints in an object-oriented environment. Such languages can represent all aspects of the software generation process (including heuristic algorithms for effecting parallel search) as dynamic processes since data and program are represented in a uniform format

    A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency

    Full text link
    This research started with an algebra for reasoning about rely/guarantee concurrency for a shared memory model. The approach taken led to a more abstract algebra of atomic steps, in which atomic steps synchronise (rather than interleave) when composed in parallel. The algebra of rely/guarantee concurrency then becomes an instantiation of the more abstract algebra. Many of the core properties needed for rely/guarantee reasoning can be shown to hold in the abstract algebra where their proofs are simpler and hence allow a higher degree of automation. The algebra has been encoded in Isabelle/HOL to provide a basis for tool support for program verification. In rely/guarantee concurrency, programs are specified to guarantee certain behaviours until assumptions about the behaviour of their environment are violated. When assumptions are violated, program behaviour is unconstrained (aborting), and guarantees need no longer hold. To support these guarantees a second synchronous operator, weak conjunction, was introduced: both processes in a weak conjunction must agree to take each atomic step, unless one aborts in which case the whole aborts. In developing the laws for parallel and weak conjunction we found many properties were shared by the operators and that the proofs of many laws were essentially the same. This insight led to the idea of generalising synchronisation to an abstract operator with only the axioms that are shared by the parallel and weak conjunction operator, so that those two operators can be viewed as instantiations of the abstract synchronisation operator. The main differences between parallel and weak conjunction are how they combine individual atomic steps; that is left open in the axioms for the abstract operator.Comment: Extended version of a Formal Methods 2016 paper, "An algebra of synchronous atomic steps

    A synchronous program algebra: a basis for reasoning about shared-memory and event-based concurrency

    Get PDF
    This research started with an algebra for reasoning about rely/guarantee concurrency for a shared memory model. The approach taken led to a more abstract algebra of atomic steps, in which atomic steps synchronise (rather than interleave) when composed in parallel. The algebra of rely/guarantee concurrency then becomes an instantiation of the more abstract algebra. Many of the core properties needed for rely/guarantee reasoning can be shown to hold in the abstract algebra where their proofs are simpler and hence allow a higher degree of automation. The algebra has been encoded in Isabelle/HOL to provide a basis for tool support for program verification. In rely/guarantee concurrency, programs are specified to guarantee certain behaviours until assumptions about the behaviour of their environment are violated. When assumptions are violated, program behaviour is unconstrained (aborting), and guarantees need no longer hold. To support these guarantees a second synchronous operator, weak conjunction, was introduced: both processes in a weak conjunction must agree to take each atomic step, unless one aborts in which case the whole aborts. In developing the laws for parallel and weak conjunction we found many properties were shared by the operators and that the proofs of many laws were essentially the same. This insight led to the idea of generalising synchronisation to an abstract operator with only the axioms that are shared by the parallel and weak conjunction operator, so that those two operators can be viewed as instantiations of the abstract synchronisation operator. The main differences between parallel and weak conjunction are how they combine individual atomic steps; that is left open in the axioms for the abstract operator.Comment: Extended version of a Formal Methods 2016 paper, "An algebra of synchronous atomic steps

    Benchmarking SciDB Data Import on HPC Systems

    Full text link
    SciDB is a scalable, computational database management system that uses an array model for data storage. The array data model of SciDB makes it ideally suited for storing and managing large amounts of imaging data. SciDB is designed to support advanced analytics in database, thus reducing the need for extracting data for analysis. It is designed to be massively parallel and can run on commodity hardware in a high performance computing (HPC) environment. In this paper, we present the performance of SciDB using simulated image data. The Dynamic Distributed Dimensional Data Model (D4M) software is used to implement the benchmark on a cluster running the MIT SuperCloud software stack. A peak performance of 2.2M database inserts per second was achieved on a single node of this system. We also show that SciDB and the D4M toolbox provide more efficient ways to access random sub-volumes of massive datasets compared to the traditional approaches of reading volumetric data from individual files. This work describes the D4M and SciDB tools we developed and presents the initial performance results. This performance was achieved by using parallel inserts, a in-database merging of arrays as well as supercomputing techniques, such as distributed arrays and single-program-multiple-data programming.Comment: 5 pages, 4 figures, IEEE High Performance Extreme Computing (HPEC) 2016, best paper finalis

    Parallel eigenanalysis of finite element models in a completely connected architecture

    Get PDF
    A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed

    Performance Evaluation of Automatically Generated Data Parallel Programs

    Get PDF
    International audienceIn this paper, the problem of evaluating the performance of parallel programs generated by data parallel compilers is studied. These compilers take as input an application written in a sequential language augmented with data distribution directives and produce a parallel version based on the specifed partitioning of data. A methodology for evaluating the relationships existing among the program characteristics, the data distribution adopted, and the performance indices measured during the program execution is described. It consists of three phases: a "static" description of the program under study, a "dynamic" description, based on the measurement and the analysis of its execution on a real system, and the construction of a workload model, by using workload characterization techniques. Following such a methodology, decisions related to the selection of the data distribution to be adopted can be facilitated. The approach is exposed through the use of the Pandore environment, designed for the execution of sequential programs on distributed memory parallel computers. It is composed of a compiler, a runtime system and tools for trace and profile generation. The results of an experiment explaining the methodology are presented

    Proto-Plasm: parallel language for adaptive and scalable modelling of biosystems

    Get PDF
    This paper discusses the design goals and the first developments of Proto-Plasm, a novel computational environment to produce libraries of executable, combinable and customizable computer models of natural and synthetic biosystems, aiming to provide a supporting framework for predictive understanding of structure and behaviour through multiscale geometric modelling and multiphysics simulations. Admittedly, the Proto-Plasm platform is still in its infancy. Its computational framework—language, model library, integrated development environment and parallel engine—intends to provide patient-specific computational modelling and simulation of organs and biosystem, exploiting novel functionalities resulting from the symbolic combination of parametrized models of parts at various scales. Proto-Plasm may define the model equations, but it is currently focused on the symbolic description of model geometry and on the parallel support of simulations. Conversely, CellML and SBML could be viewed as defining the behavioural functions (the model equations) to be used within a Proto-Plasm program. Here we exemplify the basic functionalities of Proto-Plasm, by constructing a schematic heart model. We also discuss multiscale issues with reference to the geometric and physical modelling of neuromuscular junctions

    Impact of an interactive anti-speeding threat appeal: how much threat is too much?

    Get PDF
    This study investigates the impact of an interactive television public service announcement (PSA) containing an anti-speeding threat appeal on feelings of telepresence and behavioral intention. In a 2 x 2 x 2 between-subjects factorial design with 213 participants, the level of threat evoked by a traditional PSA, by the interactive part of the PSA (dedicated advertising location) and by the preceding program context are manipulated to be either low or high. The results support the assumptions of the Extended Parallel Processing Model with regard to the effect of the level of perceived threat and perceived efficacy in an interactive media environment, and the important role of telepresence as a processing variable. The results of the three-way interaction effect of threat evoked by the program, the PSA, and the DAL on telepresence show that when the threat levels of the program and the PSA are both either low or high, exposure to the threatening information in the DAL does not generate a significantly higher feeling of telepresence. However, when a low-threat program is followed by a high-threat PSA, the threat level of the DAL has a positive effect on telepresence. The same trend is found with a high-threat program and a low-threat PSA, although the effect of the threat evoked by the DAL on telepresence is not significant at conventional levels. Finally, there is a positive effect of telepresence on the behavioral intention to reduce speeding which is partly mediated by the viewer‟s perceived efficacy to follow the recommended behavior
    • …
    corecore