76 research outputs found

    Studies on automatic parallelization for heterogeneous and homogeneous multicore processors

    Get PDF
    制度:新 ; 報告番号:甲3537号 ; 学位の種類:博士(工学) ; 授与年月日:2012/2/25 ; 早大学位記番号:新587

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft

    On the co-design of scientific applications and long vector architectures

    Get PDF
    The landscape of High Performance Computing (HPC) system architectures keeps expanding with new technologies and increased complexity. To improve the efficiency of next-generation compute devices, architects are looking for solutions beyond the commodity CPU approach. In 2021, the five most powerful supercomputers in the world use either GP-GPU (General-purpose computing on graphics processing units) accelerators or a customized CPU specially designed to target HPC applications. This trend is only expected to grow in the next years motivated by the compute demands of science and industry. As architectures evolve, the ecosystem of tools and applications must follow. The choices in the number of cores in a socket, the floating point-units per core and the bandwidth through the memory hierarchy among others, have a large impact in the power consumption and compute capabilities of the devices. To balance CPU and accelerators, designers require accurate tools for analyzing and predicting the impact of new architectural features on the performance of complex scientific applications at scale. In such a large design space, capturing and modeling with simulators the complex interactions between the system software and hardware components is a defying challenge. Moreover, applications must be able to exploit those designs with aggressive compute capabilities and memory bandwidth configurations. Algorithms and data structures will need to be redesigned accordingly to expose a high degree of data-level parallelism allowing them to scale in large systems. Therefore, next-generation computing devices will be the result of a co-design effort in hardware and applications supported by advanced simulation tools. In this thesis, we focus our work on the co-design of scientific applications and long vector architectures. We significantly extend a multi-scale simulation toolchain enabling accurate performance and power estimations of large-scale HPC systems. Through simulation, we explore the large design space in current HPC trends over a wide range of applications. We extract speedup and energy consumption figures analyzing the trade-offs and optimal configurations for each of the applications. We describe in detail the optimization process of two challenging applications on real vector accelerators, achieving outstanding operation performance and full memory bandwidth utilization. Overall, we provide evidence-based architectural and programming recommendations that will serve as hardware and software co-design guidelines for the next generation of specialized compute devices.El panorama de las arquitecturas de los sistemas para la Computación de Alto Rendimiento (HPC, de sus siglas en inglés) sigue expandiéndose con nuevas tecnologías y complejidad adicional. Para mejorar la eficiencia de la próxima generación de dispositivos de computación, los arquitectos están buscando soluciones más allá de las CPUs. En 2021, los cinco supercomputadores más potentes del mundo utilizan aceleradores gráficos aplicados a propósito general (GP-GPU, de sus siglas en inglés) o CPUs diseñadas especialmente para aplicaciones HPC. En los próximos años, se espera que esta tendencia siga creciendo motivada por las demandas de más potencia de computación de la ciencia y la industria. A medida que las arquitecturas evolucionan, el ecosistema de herramientas y aplicaciones les debe seguir. Las decisiones eligiendo el número de núcleos por zócalo, las unidades de coma flotante por núcleo y el ancho de banda a través de la jerarquía de memoría entre otros, tienen un gran impacto en el consumo de energía y las capacidades de cómputo de los dispositivos. Para equilibrar las CPUs y los aceleradores, los diseñadores deben utilizar herramientas precisas para analizar y predecir el impacto de nuevas características de la arquitectura en el rendimiento de complejas aplicaciones científicas a gran escala. Dado semejante espacio de diseño, capturar y modelar con simuladores las complejas interacciones entre el software de sistema y los componentes de hardware es un reto desafiante. Además, las aplicaciones deben ser capaces de explotar tales diseños con agresivas capacidades de cómputo y ancho de banda de memoria. Los algoritmos y estructuras de datos deberán ser rediseñadas para exponer un alto grado de paralelismo de datos permitiendo así escalarlos en grandes sistemas. Por lo tanto, la siguiente generación de dispósitivos de cálculo será el resultado de un esfuerzo de codiseño tanto en hardware como en aplicaciones y soportado por avanzadas herramientas de simulación. En esta tesis, centramos nuestro trabajo en el codiseño de aplicaciones científicas y arquitecturas vectoriales largas. Extendemos significativamente una serie de herramientas para la simulación multiescala permitiendo así obtener estimaciones de rendimiento y potencia de sistemas HPC de gran escala. A través de simulaciones, exploramos el gran espacio de diseño de las tendencias actuales en HPC sobre un amplio rango de aplicaciones. Extraemos datos sobre la mejora y el consumo energético analizando las contrapartidas y las configuraciones óptimas para cada una de las aplicaciones. Describimos en detalle el proceso de optimización de dos aplicaciones en aceleradores vectoriales, obteniendo un rendimiento extraordinario a nivel de operaciones y completa utilización del ancho de memoria disponible. Con todo, ofrecemos recomendaciones empíricas a nivel de arquitectura y programación que servirán como instrucciones para diseñar mejor hardware y software para la siguiente generación de dispositivos de cálculo especializados.Postprint (published version

    Proactive Adaptation in Self-Organizing Task-based Runtime Systems for Different Computing Classes

    Get PDF
    Moderne Computersysteme bieten Anwendern und Anwendungsentwicklern ein hohes Maß an Parallelität und Heterogenität. Die effiziente Nutzung dieser Systeme erfordert jedoch tiefgreifende Kenntnisse, z.B. der darunterliegenden Hardware-Plattform und den notwendigen Programmiermodellen, und umfangreiche Arbeit des Entwicklers. In dieser Thesis bezieht sich die effiziente Nutzung auf die Gesamtausführungszeit der Anwendungen, den Energieverbrauch des Systems, die maximale Temperatur der Verarbeitungseinheiten und die Zuverlässigkeit des Systems. Neben den verschiedenen Optimierungszielen muss ein Anwendungsentwickler auch die spezifischen Einschränkungen und Randbedingungen des Systems berücksichtigen, wie z. B. Deadlines oder Sicherheitsgarantien, die mit bestimmten Anwendungsbereichen einhergehen. Diese Komplexität heterogener Systeme macht es unmöglich, alle potenziellen Systemzustände und Umwelteinflüsse, die zur Laufzeit auftreten können, vorherzusagen. Die System- und Anwendungsentwickler sind somit nicht in der Lage, zur Entwurfszeit festzulegen, wie das System und die Anwendungen in allen möglichen Situationen reagieren sollen. Daher ist es notwendig, die Systeme zur Laufzeit der aktuellen Situation anzupassen, um ihr Verhalten entsprechend zu optimieren. In eingebetteten Systemen mit begrenzten Kühlkapazitäten muss z.B. bei Erreichen einer bestimmten Temperaturschwelle eine Lastverteilung vorgenommen, die Frequenz verringert oder Verarbeitungseinheiten abgeschaltet werden, um die Wärmeentwicklung zu reduzieren. Normalerweise reicht es aber nicht aus, einfach nur auf einen ungünstigen Systemzustand zu reagieren. Das Ziel sollte darin bestehen, ungünstige oder fehlerhafte Systemzustände vor dem Auftreten zu vermeiden, um die Notwendigkeit des Aufrufs von Notfallfunktionen zu verringern und die Benutzerfreundlichkeit zu verbessern. Anstatt beispielsweise die Wärmeentwicklung durch eine Neuverteilung der Anwendungen zu reduzieren, könnten proaktive Mechanismen kritische Temperaturen bereits im Vorfeld vermeiden, indem sie bestimmte unkritische Aufgaben verzögern oder deren Genauigkeit oder QoS verringern. Auf diese Weise wird die Systemlast reduziert, bevor ein kritischer Punkt erreicht wird. Lösungen des aktuellen Stands der Technik wie einheitliche Programmiersprachen oder Laufzeitsysteme adressieren einige der oben genannten Herausforderungen, jedoch existiert kein Ansatz, der in der Lage ist, eine Optimierung mehrerer sich widersprechender Zielfunktionen dynamisch und vor allem proaktiv durchzuführen. Ein Konzept, das diese komplexe Aufgabe für den Entwickler übernimmt und eine Möglichkeit zur dynamischen und proaktiven Anpassung an Veränderungen bietet, ist die Selbstorganisation. Selbstorganisation ist jedoch definiert als ein Prozess ohne externe Kontrolle oder Steuerung. Im Kontext der Systemoptimierung kann dies leicht zu unerwünschten Ergebnissen führen. Ein Ansatz, der Selbstorganisation mit einem Kontrollmechanismus kombiniert, welcher auf Robustheit und Widerstandsfähigkeit gegenüber äußeren Störungen abzielt, ist Organic Computing. Das bestimmende Merkmal von Organic Computing ist eine Observer/Controller-Architektur. Das Konzept dieser Architektur besteht darin, den aktuellen Zustand des Systems und der Umgebung zu überwachen, diese Daten zu analysieren und auf der Grundlage dieser Analyse Entscheidungen über das zukünftige Systemverhalten zu treffen. Organic Computing ermöglicht es also auf der Grundlage der vergangenen und des aktuellen Zustands proaktiv Mechanismen auszuwählen und auszulösen, die das System optimieren und unerwünschte Zustände vermeiden. Um die Vorteile des Organic Computings auf moderne heterogene Systeme zu übertragen, kombiniere ich den Organic Computing-Ansatz mit einem Laufzeitsystem. Laufzeitsysteme sind ein vielversprechender Kandidat für die Umsetzung des Organic Computing-Ansatzes, da sie bereits die Ausführung von Anwendungen überwachen und steuern. Insbesondere betrachte und bearbeite ich in dieser Dissertation die folgenden Forschungsthemen, indem ich die Konzepte des Organic Computings und der Laufzeitsysteme kombiniere: • Erfassen des aktuellen Systemzustands durch Überwachung von Sensoren und Performance Countern • Vorhersage zukünftiger Systemzustände durch Analyse des vergangenen Verhaltens • Nutzung von Zustandsinformationen zur proaktiven Anpassung des Systems Ich erweitere das Thema der Erfassung von Systemzuständen auf zwei Arten. Zunächst führe ich eine neuartige heuristische Metrik zur Berechnung der Zuverlässigkeit einer Verarbeitungseinheit ein, die auf symptombasierter Fehlererkennung basiert. Symptombasierte Fehlererkennung ist eine leichtgewichtige Methode zur dynamischen Erkennung von soften Hardware-Fehlern durch Überwachung des Ausführungsverhaltens mit Performance Countern. Die dynamische Erkennung von Fehlern ermöglicht dann die Berechnung einer heuristischen Fehlerrate einer Verarbeitungseinheit in einem bestimmten Zeitfenster. Die Fehlerrate wird verwendet, um die Anzahl der erforderlichen Ausführungen einer Anwendung zu berechnen, um eine bestimmte Ergebniszuverlässigkeit, also eine Mindestwahrscheinlichkeit für ein korrektes Ergebnis, zu gewährleisten. Ein wichtiger Aspekt der Zustandserfassung ist die Minimierung des entstehenden Overheads. Ich verringere die Anzahl der für OpenMP-Tasks notwendigen Profiling-Durchläufe durch Thread-Interpolation und Überprüfungen des Skalierungsverhaltens. Zusätzlich untersuche ich die Vorhersage von OpenCL Task-Ausführungszeiten. Die Prädiktoren der Ausführungszeiten werden mit verschiedenen maschinellen Lernalgorithmen trainiert. Als Input werden Profile der Kernel verwendet, die durch statische Codeanalyse erstellt wurden. Um in dieser Dissertation zukünftige Systemzustände vorherzusagen, sollen Anwendungen vorausgesagt werden, die in naher Zukunft im System vorkommen werden. In Kombination mit der Ausführungsdatenbank ermöglicht dies die Schätzung der anstehenden Kosten, die das System zu bewältigen hat. In dieser Arbeit werden zwei Mechanismen zur Vorhersage von Anwendungen/Tasks entwickelt. Der erste Prädiktor zielt darauf ab, neue Instanzen unabhängiger Tasks vorherzusagen. Der zweite Mechanismus betrachtet Ausführungsmuster abhängiger Anwendungen und sagt auf dieser Grundlage zukünftig auftretende Anwendungen vorher. Beide Mechanismen verwenden eine Vorhersagetabelle, die auf Markov-Prädiktoren und dem Abgleich von Mustern basiert. In dieser Arbeit wird das Wissen, das durch die Systemüberwachung und die Vorhersage zukünftiger Anwendungen gewonnen wird, verwendet, um die Optimierungsziele des Systems proaktiv in Einklang zu bringen und zu gewichten. Dies geschieht durch eine Reihe von Regeln, die eine Systemzustandsbeschreibung, bestehend aus dem aktuellen Zustand, Vorhersagen und Randbedingungen bzw. Beschränkungen, auf einen Vektor aus Gewichten abbilden. Zum Erlernen der Regelmenge wird ein Extended Classifer System (XCS) eingesetzt. Das XCS ist in eine hierarchische Architektur eingebettet, die nach den Prinzipien des Organic Computing entworfen wurde. Eine wichtige Designentscheidung ist dabei die Auslagerung der Erstellung neuer Regeln an einen Offline-Algorithmus, der einen Simulator nutzt und parallel zum normalen Systemablauf ausgeführt wird. Dadurch wird sichergestellt, dass keine ungetesteten Regeln, deren Auswirkungen noch nicht bekannt sind, dem laufenden System hinzugefügt werden. Die sich daraus ergebenden Gewichte werden schließlich verwendet, um eine Bewertungsfunktion für List Scheduling-Algorithmen zu erstellen. Diese Dissertation erweitert das Forschungsgebiet der Scheduling-Algorithmen durch zwei Mechanismen für dynamisches Scheduling. Die erste Erweiterung konzentriert sich auf nicht sicherheitskritische Systeme, die Prioritäten verwenden, um die unterschiedliche Wichtigkeit von Tasks auszudrücken. Da statische Prioritäten in stark ausgelasteten Systemen zu Starvation führen können, habe ich einen dynamischen Ageing-Mechanismus entwickelt, der dazu in der Lage ist, die Prioritäten der Tasks entsprechend der aktuellen Auslastung und ihrer Wartezeiten anzupassen. Dadurch reduziert der Mechanismus die Gesamtlaufzeit über alle Tasks und die Wartezeit für Tasks mit niedrigerer Priorität. Noch ist eine große Anzahl von Anwendungen nicht dazu bereit, den hohen Grad an Parallelität zu nutzen, den moderne Computersysteme bieten. Ein Konzept, das versucht dieses Problem zu lösen, indem es mehrere verschiedene Prozesse auf demselben Rechenknoten zur Ausführung bringt, ist das Co-Scheduling. In dieser Dissertation stelle ich einen neuartigen Co-Scheduling-Mechanismus vor, welcher die Task-Schedules mehrerer Laufzeitsysteminstanzen optimiert, die auf demselben Rechenknoten ausgeführt werden. Um die notwendigen Informationen zwischen den Laufzeitsysteminstanzen zu teilen, speichert der Mechanismus die Daten in Shared Memory. Sobald ein Laufzeitsystem neue Tasks in das System einfügt, prüft der Mechanismus, ob die Berechnung eines neuen Schedules sinnvoll ist. Wird die Entscheidung getroffen, einen neuen Schedule zu berechnen, setzt der Mechanismus Simulated Annealing ein, um alle Tasks, die bisher noch nicht mit ihrer Ausführung begonnen haben, neu auf Ausführungseinheiten abzubilden. Zusammenfassend lässt sich sagen, dass diese Arbeit neuartige Mechanismen und Algorithmen sowie Erweiterungen zu verschiedenen Forschungsgebieten anbietet, um ein proaktives selbst-organisierendes System zu implementieren, das sich an neue und unbekannte Situationen anpassen kann. Dabei wird die Komplexität für Benutzer und Anwendungsentwickler reduziert, indem die Entscheidungsfindung in das System selbst ausgelagert wird. Gleichzeitig sorgt dieser Ansatz für eine effiziente Nutzung der Ressourcen des Systems. Insgesamt leistet diese Arbeit die folgenden Beiträge zur Erweiterung des Stands der Forschung: • Einführung einer neuartigen heuristischen Metrik zur Messung der Zuverlässigkeit von Verarbeitungseinheiten. Die Metrik basiert auf einer leichtgewichtigen Methode zur Fehlererkennung, genannt symptombasierte Fehlererkennung. Mit der symptombasierten Fehlererkennung ist es möglich, mehrere injizierte Fehlerklassen und Interferenzen, die Soft-Hardware-Fehler simulieren, sowohl auf einer CPU als auch auf einer GPU zuverlässig zu erkennen. Darüber hinaus werden diese Ergebnisse durch Welch\u27s t-Test statistisch bestätigt. • Vorschlag eines Vorhersagemodells für die Ausführungszeit von OpenCL Kerneln, das auf statischer Code-Analyse basiert. Das Modell ist in der Lage, die schnellste Verarbeitungseinheit aus einer Menge von Verarbeitungseinheiten mit einer Genauigkeit von im schlechtesten Fall 69%69\,\% auszuwählen. Zum Vergleich: eine Referenzvariante, welche immer den Prozessor vorhersagt, der die meisten Kernel am schnellsten ausführt, erzielt eine Genauigkeit von 25%25\,\%. Im besten Fall erreicht das Modell eine Genauigkeit von bis zu 83%83\,\%. • Bereitstellung von zwei Prädiktoren für kommende Tasks/Anwendungen. Der erste Mechanismus betrachtet unabhängige Tasks, die ständig neue Task-Instanzen erstellen, der zweite abhängige Anwendungen, die Ausführungsmuster bilden. Dabei erzielt der erste Mechanismus bei der Vorhersage der Zeitspanne zwischen zwei aufeinanderfolgenden Task-Instanzen einen maximalen\\ sMAPEsMAPE-Wert von 4,33%4,33\,\% für sporadische und 0,002%0,002 \,\% für periodische Tasks. Darüber hinaus werden Tasks mit einem aperiodischen Ausführungsschema zuverlässig erkannt. Der zweite Mechanismus erreicht eine Genauigkeit von 77,6%77,6 \,\% für die Vorhersage der nächsten anstehenden Anwendung und deren Startzeit. • Einführung einer Umsetzung eines hierarchischen Organic Computing Frameworks mit dem Anwendungsgebiet Task-Scheduling. Dieses Framework enthält u.a. ein modifiziertes XCS, für dessen Design und Implementierung ein neuartiger Reward-Mechanismus entwickelt wird. Der Mechanismus bedient sich dabei eines speziell für diesen Zweck entwickelten Simulators zur Berechnung von Task-Ausführungskosten. Das XCS bildet Beschreibungen des Systemzustands auf Gewichte zur Balancierung der Optimierungsziele des Systems ab. Diese Gewichte werden in einer Bewertungsfunktion für List Scheduling-Algorithmen verwendet. Damit wird in einem Evaluationsszenario, welches aus einem fünfmal wiederholten Muster aus Anwendungen besteht, eine Reduzierung der Gesamtlaufzeit um 10,4%10,4\,\% bzw. 26,7s26,7\,s, des Energieverbrauchs um 4,7%4,7\,\% bzw. 2061,1J2061,1\,J und der maximalen Temperatur der GPU um 3,6%3,6\,\% bzw. 2,7K2,7 K erzielt. Lediglich die maximale Temperatur über alle CPU-Kerne erhöht sich um 6%6\,\% bzw. 2,3K2,3\,K. • Entwicklung von zwei Erweiterungen zur Verbesserung des dynamischen Task-Schedulings für einzelne und mehrere Prozesse, z.B. mehrere Laufzeitsysteminstanzen. Der erste Mechanismus, ein Ageing-Algorithmus, betrachtet nicht sicherheitskritische Systeme, welche Task-Prioritäten verwenden, um die unterschiedliche Bedeutung von Anwendungen darzustellen. Da es in solchen Anwendungsszenarien in Kombination mit hoher Systemauslastung zu Starvation kommen kann, passt der Mechanismus die Task-Prioritäten dynamisch an die aktuelle Auslastung und die Task-Wartezeiten an. Insgesamt erreicht dieser Mechanismus in zwei Bewertungsszenarien eine durchschnittliche Laufzeitverbesserung von 3,75%3,75\,\% und 3,16%3,16\,\% bei gleichzeitiger Reduzierung der Durchlaufzeit von Tasks mit niedrigerer Priorität um bis zu 25,67%25,67\,\%. Der zweite Mechanismus ermöglicht die Optimierung von Schedules mehrerer Laufzeitsysteminstanzen, die parallel auf demselben Rechenknoten ausgeführt werden. Dieser Co-Scheduling-Ansatz verwendet Shared Memory zum Austausch von Informationen zwischen den Prozessen und Simulated Annealing zur Berechnung neuer Task-Schedules. In zwei Evaluierungsszenarien erzielt der Mechanismus durchschnittliche Laufzeitverbesserungen von 19,74%19,74\,\% und 20,91%20,91\,\% bzw. etwa 2,7s2,7\,s und 3s3\,s

    Adaptive Resource Relocation in Virtualized Heterogeneous Clusters

    No full text
    Cluster computing has recently gone through an evolution from single processor systems to multicore/multi-socket systems. This has resulted in lowering the cost/performance ratio of the compute machines. Compute farms that host these machines tend to become heterogeneous over time due to incremental extensions, hardware upgrades and/or nodes being purchased for users with particular needs. This heterogeneity is not surprising given the wide range of processor, memory and network technologies that become available and the relatively small price difference between these various options. Different CPU architectures, memory capacities, communication and I/O interfaces of the participating compute nodes present many challenges to job scheduling and often result in under or over utilization of the compute resources. In general, it is not feasible for the application programmers to specifically optimize their programs for such a set of differing compute n odes, due to the difficulty and time-intensiveness of such a task. The trend of heterogeneous compute farms has coincided with resurgence in the virtualization technology. Virtualization technology is receiving widespread adoption, mainly due to the benefits of server consolidation and isolation, load balancing, security and fault tolerance. Virtualization has also generated considerable interest in the High Performance Computing (HPC) community, due to the resulting high availability, fault tolerance, cluster partitioning and accommodation of conflicting user requirements. However, the HPC community is still wary of the potential overheads associated with‘ virtualization, as it results in slower network communications and disk I/O, which need to be addressed. The live migration feature, available to most virtualization technologies, can be leveraged to improve the throughput of a heterogeneous compute farm (HC) used for HPC applications. For this we mitigated the slow network communication in Xen; an open source virtual machine monitor. We present a detailed analysis of the communication framework of Xen and propose communication configurations that give 50% improvement over the conventional Xen network configuration. From a detailed study of the migration facility in Xen, we propose an improvement in the live migration facility specifically targeting HPC applications. This optimization gives around 50% improvement over the default migration facility of Xen. In this thesis, we also investigate resource scheduling in heterogeneous compute farm with the perspective of dynamic resource re-mapping. Our approach is to profile each job in the compute farm at runtime, and propose a better resource mapping compared to the initial allocation. We then migrate the job(s) to the best-suited homogeneous sub-cluster to improve overall throughput of the HC. For this, we develop a novel heterogeneity and virtualization-aware profiling framework, which is able to predict the CPU and communication characteristics of high performance scientific applications. The prediction accuracy of our performance estimation model is over 80%. The framework implementation is lightweight, with an overhead of 3%. Our experiments show that we are able to improve the throughput of the compute farm by 25% and the time saved by the HC with our framework is over 30%. The framework can be readily extended to HCs supporting a cloud computing environment

    Atomic dataflow model

    Get PDF
    With the recent switch in the design of general purpose processors from frequency scaling of a single processor core towards increasing the number of processor cores, parallel programming became important not only for scientific programming but also for general purpose programming. This also stressed the importance of programmability of existing parallel programming models which were primarily designed for performance. It was soon recognized that new programming models are needed that will make parallel programming possible not only to experts, but to a general programming community. Transactional Memory (TM) is an example which follows this premise. It improves dramatically over any previous synchronization mechanism in terms of programmability and composability, at the price of possibly reduced performance. The main source of performance degradation in Transactional Memory is the overhead of transactional execution. Our work on parallelizing Quake game engine is a clear example of this problem. We show that Software Transactional Memory is superior in terms of programmability compared to lock based programming, but that performance is hindered due to extreme amount of overhead introduced by transactional execution. In the meantime, a significant research effort has been invested in overcoming this problem. Our approach is aimed towards improving the performance of transactional code by reducing transactional data conflicts. The idea is based on the organization of the code in which highly conflicting data is promoted to dataflow tokens that coordinate the execution of transactions. The main contribution of this thesis is Atomic Dataflow model (ADF), a new task-based parallel programming model for C/C++ that integrates dataflow abstractions into the shared memory programming model. The ADF model provides language constructs that allow a programmer to delineate a program into a set of tasks and to explicitly define data dependencies for each task. The task dependency information is conveyed to the ADF runtime system that constructs a dataflow task graph that governs the execution of a program. Additionally, the ADF model allows tasks to share data. The key idea is that computation is triggered by dataflow between tasks but that, within a task, execution occurs by making atomic updates to common mutable state. To that end, the ADF model employs transactional memory, which guarantees atomicity of shared memory updates. The second contribution of this thesis is DaSH - the first comprehensive benchmark suite for hybrid dataflow and shared memory programming models. DaSH features 11 benchmarks, each representing one of the Berkeley dwarfs that capture patterns of communication and computation common to a wide range of emerging applications. DaSH includes sequential and shared-memory implementations based on OpenMP and TBB to facilitate easy comparison between hybrid dataflow implementations and traditional shared memory implementations. We use DaSH not only to evaluate the ADF model, but to also compare it with other two hybrid dataflow models in order to identify the advantages and shortcomings of such models, and motivate further research on their characteristics. Finally, we study applicability of hybrid dataflow models for parallelization of the game engine. We show that hybrid dataflow models decrease the complexity of the parallel game engine implementation by eliminating or restructuring the explicit synchronization that is necessary in shared memory implementations. The corresponding implementations also exhibit good scalability and better speedup than the shared memory parallel implementations, especially in the case of a highly congested game world that contains a large number of game objects. Ultimately, on an eight core machine we were able to obtain 4.72x speedup compared to the sequential baseline, and to improve 49% over the lock-based parallel implementation based on work-sharing.Con el reciente cambio en el diseño de los procesadores de propósito general pasando del aumento de frecuencia al incremento del número de núcleos, la programación paralela se ha convertido en importante no solo para la comunidad científica sino también para la programación en general. Este hecho ha enfatizado la importancia de la programabilidad de los modelos actuales de programación paralela, cuyo objetivo era el rendimiento. Pronto se observó la necesidad de nuevos modelos de programación, para hacer factible la programación paralela a toda la comunidad. Transactional Memory (TM) es un ejemplo de dicho objetivo. Supone una gran mejora sobre cualquier método anterior de sincronización en términos de programabilidad, con una posible reducción del rendimiento como coste. La razón principal de dicha degradación es el sobrecoste de la ejecución transaccional. Nuestro trabajo en la paralelización del motor del juego Quake es un claro ejemplo de este problema. Demostramos que Software Transactional Memory es superior en términos de programabilidad a los modelos de programación basados en locks, pero que el rendimiento es entorpecido por el sobrecoste introducido por TM. Mientras tanto, se ha invertido un importante esfuerzo de investigación para superar dicho problema. Nuestra solución se dirige hacia la mejora del rendimiento del código transaccional reduciendo los conflictos con la información contenida en las transacciones. La idea se basa en la organización del código en el cual la información conflictiva es promocionada a señales del flujo de datos que coordinan la ejecución de las transacciones. La contribución principal de esta tesis es Atomic Dataflow Model (ADF), un nuevo modelo de programación para C/C++ basado en tareas que integra abstracciones de flujo de datos en el modelo de programación de la memoria compartida. El modelo ADF provee construcciones del lenguaje que permiten al programador la definición del programa como un conjunto de tareas, además de la definición explícita de las dependencias de datos para cada tarea. La información de dependencia de la tarea se transmite al runtime de ADF, que construye un grafo de tareas que es el que controla la ejecución de un programa. Adicionalmente, el modelo ADF permite que las tareas compartan información. La idea principal es que la computación es activada por el flujo de datos entre tareas, pero que dentro de una tarea la ejecución ocurre haciendo actualizaciones atómicas a un estado común mutable. Para conseguir este fin, el modelo ADF utiliza TM, que garantiza la atomicidad en las modificaciones de la memoria compartida. La segunda contribución es DaSH, el primer conjunto de benchmarks para los modelos de programación de flujo de datos híbridos y los de memoria compartida. DaSH contiene 11 benchmarks, cada uno representativo de uno de los Berkeley dwarfs que captura patrones de comunicaciones y procesamiento comunes en un amplio rango de aplicaciones emergentes. DaSH incluye implementaciones secuenciales y de memoria compartida basadas en OpenMP y TBB que facilitan la comparación entre los modelos híbridos de flujo de datos e implementaciones de memoria compartida. Nosotros usamos DaSH no solo para evaluar ADF, sino también para compararlo con otros dos modelos híbridos para identificar sus ventajas. Finalmente, estudiamos la aplicabilidad de dichos modelos híbridos para la paralelización del motor del juego. Mostramos que disminuyen la complejidad de la implementación paralela, eliminando o reestructurando la sincronización explícita que es necesaria en las implementaciones de memoria compartida. También se observa una buena escalabilidad y una aceleración mejor, especialmente en el caso de un ambiente de juego muy cargado. En última instancia, sobre una máquina con ocho núcleos se ha obtenido una aceleración del 4.72x comparado con el código secuencial, y una mejora del 49% sobre la implementación paralela basada en locks

    Research and technology, 1990: Goddard Space Flight Center

    Get PDF
    Goddard celebrates 1990 as a banner year in space based astronomy. From above the Earth's obscuring atmosphere, four major orbiting observatories examined the heavens at wavelengths that spanned the electromagnetic spectrum. In the infrared and microwave, the Cosmic Background Explorer (COBE), measured the spectrum and angular distribution of the cosmic background radiation to extraordinary precision. In the optical and UV, the Hubble Space Telescope has returned spectacular high resolution images and spectra of a wealth of astronomical objects. The Goddard High Resolution Spectrograph has resolved dozens of UV spectral lines which are as yet unidentified because they have never before been seen in any astronomical spectrum. In x rays, the Roentgen Satellite has begun returning equally spectacular images of high energy objects within our own and other galaxies
    corecore