406,280 research outputs found

    Instrumentation, performance visualization, and debugging tools for multiprocessors

    Get PDF
    The need for computing power has forced a migration from serial computation on a single processor to parallel processing on multiprocessor architectures. However, without effective means to monitor (and visualize) program execution, debugging, and tuning parallel programs becomes intractably difficult as program complexity increases with the number of processors. Research on performance evaluation tools for multiprocessors is being carried out at ARC. Besides investigating new techniques for instrumenting, monitoring, and presenting the state of parallel program execution in a coherent and user-friendly manner, prototypes of software tools are being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Our current tool set, the Ames Instrumentation Systems (AIMS), incorporates features from various software systems developed in academia and industry. The execution of FORTRAN programs on the Intel iPSC/860 can be automatically instrumented and monitored. Performance data collected in this manner can be displayed graphically on workstations supporting X-Windows. We have successfully compared various parallel algorithms for computational fluid dynamics (CFD) applications in collaboration with scientists from the Numerical Aerodynamic Simulation Systems Division. By performing these comparisons, we show that performance monitors and debuggers such as AIMS are practical and can illuminate the complex dynamics that occur within parallel programs

    Spatial Resonator Solitons

    Full text link
    Spatial solitons can exist in various kinds of nonlinear optical resonators with and without amplification. In the past years different types of these localized structures such as vortices, bright, dark solitons and phase solitons have been experimentally shown to exist. Many links appear to exist to fields different from optics, such as fluids, phase transitions or particle physics. These spatial resonator solitons are bistable and due to their mobility suggest schemes of information processing not possible with the fixed bistable elements forming the basic ingredient of traditional electronic processing. The recent demonstration of existence and manipulation of spatial solitons in emiconductor microresonators represents a step in the direction of such optical parallel processing applications. We review pattern formation and solitons in a general context, show some proof of principle soliton experiments on slow systems, and describe in more detail the experiments on semiconductor resonator solitons which are aimed at applications.Comment: 15 pages, 32 figure

    Bounding the execution time of parallel applications on unrelated multiprocessors

    Get PDF
    Heterogeneous multiprocessors, that consist of processor types with different execution capabilities, are critical today, and in future, to offer high performance and high energy efficiency. In order to use them in hard real-time systems to support parallel processing, a tight estimation of the upper bound on the completion time (WCET) of parallel applications is needed. This paper presents, for the first time, a closed-form solution for the calculation of the WCET for task-based parallel applications modeled as directed acyclic-graphs (DAG) using the general unrelated multiprocessor model that is capable of modeling a wide range of heterogeneous multiprocessor platforms. The paper contributes with a polynomial time algorithm to calculate the WCET (i.e., makespan) for the unrelated model. In addition, it presents simulation results that are based on modeling a set of representative OpenMP task-based parallel applications from the BOTS benchmark suite
    • …
    corecore