3 research outputs found

    Computational Modelling of Concrete and Concrete Structures

    Get PDF
    Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures

    Parallel physics-inspired waterflow particle mechanics algorithm for load rebalancing

    No full text
    The Load Rebalancing Problem (LRP) that reassigns tasks to processors so as to minimize the maximum load arises in the context of dynamic load balancing. Many applications such as on Web based environment, parallel computing on clusters can be stated as LRP. Solving LRP successfully would allow us to utilize resources better and achieve better performance. However LRP has been proven to be NP-hard, thus generating the exact solutions in tractable amount of time becomes infeasible when the problems become large. We present a new nature-inspired approximation algorithm based on the Waterflow Particle Mechanics (W-PM) model to compute in parallel approximate efficient solutions for LRPs. Just like other Nature-inspired Algorithms (NAs) drawing from observations of physical processes that occur in nature, the W-PM algorithm is inspired by kinematics and dynamics of waterflow. The W-PM algorithm maps the classical LRP to the flow of water flows in channels by corresponding mathematical model in which all water flows flow according to certain defined rules until reaching a stable state. By anti-mapping the stable state, the solution to LRP can be obtained. © 2010 Elsevier B.V. All rights reserved.link_to_subscribed_fulltex

    Computational Modelling of Concrete and Concrete Structures

    Get PDF
    Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures
    corecore