326 research outputs found

    Momentum, energy and scalar transport in polydisperse gas-solid flows using particle-resolved direct numerical simulations

    Get PDF
    Gas-solid flows are commonly encountered in Nature and in several industrial applications. Emerging carbon-neutral or carbon negative technologies such as chemical looping combustion and CO2 capture are examples of gas-solid flows in power generation industry. Computational fluid dynamics (CFD) simulations are increasingly being seen as a cost-effective tool in the design of technological applications in power generation industry. Device-scale CFD calculations that involve gas-solid flow are based on statistical descriptions that require closure models for the exchange of mass, momentum, energy and heat transfer between the dispersed solid phase and the gas phase. The predictive capability of multiphase flow CFD simulations strongly depends on the accuracy of the models used for the interphase exchange terms. Particle-resolved direct numerical simulation (PR-DNS) is a first-principles approach to develop accurate models for interphase momentum, energy and heat transfer in gas-solid flow. The primary objective of this work is the development of accurate models for the interphase exchange of momentum, kinetic energy and heat transfer in polydisperse gas-solid flows using PR-DNS. A novel computational tool named Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM) has been developed as a part of this work to perform PR-DNS of flow past fixed and freely moving spherical particles. We designed the appropriate numerical experiment that can be used to develop closure models for interphase momentum transfer and formally established the connection between PR-DNS and statistical theory of multiphase flow for which the models are intended. Using PUReIBM we developed an improved drag correlation to model interphase momentum transfer in gas-solid flow. The solution fields obtained from PUReIBM PR-DNS have been used to quantify the velocity fluctuations in the gas-phase and a simple eddy viscosity model for the gas-phase pseudo-turbulent kinetic energy has been developed. A novel PR-DNS methodology to study heat transfer in gas-solid flow has been developed. These results provide insight into the role of fluid heating in gas-solid flow and motivate the development of better models for gas-solid flow heat transfer. From PR-DNS of freely evolving gas-solid suspensions we developed a stochastic model for particle acceleration that accounts for the particle velocity distribution. In addition to model development, the implementation of a parallel algorithm that enables PR-DNS of gas-solid flow on petascale supercomputers is also discussed

    Orientation and rotational diffusion of fibers in semidilute suspension

    Get PDF
    The dynamics of fiber orientation is of great interest for efforts to predict the microstructure and material properties of a suspension flow system. In this research a fiber-level, hybrid simulation method, LBM‒EBF (coupled lattice‒Boltzmann method with the external boundary force method) is undertaken to advance the current understanding of the hydrodynamic interaction induced rotational diffusion mechanism for rigid fibers in semidilute suspension of low Reynolds number flow. The LBM‒EBF simulations correctly predict the orbit constant distribution of fibers in a sheared semidilute suspension flow. It is demonstrated that an anisotropic, weak rotary diffusion model can fit the orbit constant distribution very well, but it can not describe the asymmetry in Stokes flow observed in semidilute suspension. The rotational diffusion process is then characterized with a three dimensional spatial tensor representation of the rotational diffusivity. A scalar measure of the rotational diffusion‒'scalar Folgar‒Tucker constant', C[subscript I], is extracted from this tensor. The study provides substantial numerical evidence that the range of C[subscript I] (0.0038 to 0.0165) obtained by Folgar&Tucker (J. reinf. plast. and comp, v.3, 1984) in a semidilute regime is overly diffusive, and that the correct magnitude is of O(10⁻⁴). The study reveals that the interactions among fibers become more frequent with either the decrease of fiber aspect-ratio, r[subscript p] (keeping nL³ constant, where n is the fiber number density, and L is the fiber length) or with the increase of nL³ (keeping r[subscript p] constant) in the semidilute regime, which in consequence causes an increase in C[subscript I]. The rheological properties of sheared semidilute suspension are also computed with direct LBM‒EBF simulations. The LBM‒EBF investigation is extended to characterize the fiber orientation in a linearly contracting channel similar to a paper machine 'headbox'. It is found that the rotational diffusion is the predominant term over the strain rate in the semidilute regime for a low Reynolds number flow, and it results in a decreasing trend of rotational Peclet number, Pe, along the contraction centerline. Lastly, in order to improve the numerical consistency of the existing LBM‒EBF approach, a modification to the body force term in the LB equation is suggested, which can recover the exact macroscopic hydrodynamics from the mesoscale.Ph.D.Committee Chair: Cyrus, Aidun; Committee Member: Breedveld, Victor; Committee Member: Ghiaasiaan, Mostafa S.; Committee Member: Salant, Richard F.; Committee Member: Vuduc, Richar

    Instability and treatments of the coupled discrete element and lattice Boltzmann method by the immersed moving boundary scheme

    Get PDF
    The immersed moving boundary (IMB) scheme has been extensively used to couple the discrete element method (DEM) with the lattice Boltzmann method (LBM). In the literature, only the formulation of IMB for lattice nodal cells covered by a single‐solid particle was given. The treatment of situations where a nodal cell is covered by two or more solid particles is seldom discussed. It is found that some numerical instability can occur for such situations due to an inappropriate computation of the weighting function in the IMB formulation. This work presents an enhanced treatment that can resolve the issue and validates it using some benchmark tests. Furthermore, to avoid the extra costs associated with the treatment and simplify the complicated procedure introduced, a simplified IMB scheme is proposed. The accuracy of both enhanced and simplified IMB schemes are validated by test cases including single‐particle sedimentation, two‐particle drafting‐kissing‐tumbling phenomenon, and multiple‐particle sedimentation. Then, the robustness of both schemes is examined and discussed using a specially designed flow past cylinders test. The simplified IMB scheme is proved to be robust and sufficiently accurate and simpler and more effective than the enhanced scheme

    Load balancing of parallel cell-based blood flow simulations

    Get PDF
    The non-homogeneous distribution of computational costs is often challenging to handle in highly parallel applications. Using a methodology based on fractional overheads, we studied the fractional load imbalance overhead in a high-performance biofluid simulation aiming to accurately resolve blood flow on a cellular level. In general, the concentration of particles in such a suspension flow is not homogeneous. Usually, there is a depletion of cells close to walls, and a higher concentration towards the centre of the flow domain. We perform parallel simulations of such suspension flows. The emerging non-homogeneous cell distributions might lead to strong load imbalance, resulting in deterioration of the parallel performance. We formulate a model for the fractional load imbalance overhead, validate it by measuring this overhead in parallel lattice Boltzmann based cell-based blood flow simulations, and compare the arising load imbalance with other sources of overhead, in particular the communication overhead. We find a good agreement between the measurements and our load imbalance model. We also find that in our test cases, the communication overhead was higher than the load imbalance overhead. However, for larger systems, we expect load imbalance overhead to be dominant. Thus, efficient load balancing strategies should be developed

    A Review on Contact and Collision Methods for Multi-body Hydrodynamic problems in Complex Flows

    Full text link
    Modeling and direct numerical simulation of particle-laden flows have a tremendous variety of applications in science and engineering across a vast spectrum of scales from pollution dispersion in the atmosphere, to fluidization in the combustion process, to aerosol deposition in spray medication, along with many others. Due to their strongly nonlinear and multiscale nature, the above complex phenomena still raise a very steep challenge to the most computational methods. In this review, we provide comprehensive coverage of multibody hydrodynamic (MBH) problems focusing on particulate suspensions in complex fluidic systems that have been simulated using hybrid Eulerian-Lagrangian particulate flow models. Among these hybrid models, the Immersed Boundary-Lattice Boltzmann Method (IB-LBM) provides mathematically simple and computationally-efficient algorithms for solid-fluid hydrodynamic interactions in MBH simulations. This paper elaborates on the mathematical framework, applicability, and limitations of various 'simple to complex' representations of close-contact interparticle interactions and collision methods, including short-range inter-particle and particle-wall steric interactions, spring and lubrication forces, normal and oblique collisions, and mesoscale molecular models for deformable particle collisions based on hard-sphere and soft-sphere models in MBH models to simulate settling or flow of nonuniform particles of different geometric shapes and sizes in diverse fluidic systems.Comment: 37 pages, 12 Figure

    Numerical investigation of particle-fluid interaction system based on discrete element method

    Get PDF
    This thesis focuses on the numerical investigation of the particle-fluid systems based on the Discrete Element Method (DEM). The whole thesis consists of three parts, in each part we have coupled the DEM with different schemes/solvers on the fluid phase. In the first part, we have coupled DEM with Direct Numerical Simulation (DNS) to study the particle-laden turbulent flow. The effect of collisions on the particle behavior in fully developed turbulent flow in a straight square duct was numerically investigated. Three sizes of particles were considered with diameters equal to 50 µm, 100 µm and 500 µm. Firstly, the particle transportation by turbulent flow was studied in the absence of the gravitational effect. Then, the particle deposition was studied under the effect of the wall-normal gravity force in which the influence of collisions on the particle resuspension rate and the final stage of particle distribution on the duct floor were discussed, respectively. In the second part, we have coupled DEM with Lattice Boltzmann Method (LBM) to study the particle sedimentation in Newtonian laminar flow. A novel combined LBM-IBM-DEM scheme was presented with its application to model the sedimentation of two dimensional circular particles in incompressible Newtonian flows. Case studies of single sphere settling in a cavity, and two particles settling in a channel were carried out, the velocity characteristics of the particle during settling and near the bottom were examined. At last, a numerical example of sedimentation involving 504 particles was finally presented to demonstrate the capability of the combined scheme. Furthermore, a Particulate Immersed Boundary Method (PIBM) for simulating the fluid-particle multiphase flow was presented and assessed in both two and three-dimensional applications. Compared with the conventional IBM, dozens of times speedup in two-dimensional simulation and hundreds of times in three-dimensional simulation can be expected under the same particle and mesh number. Numerical simulations of particle sedimentation in the Newtonian flows were conducted based on a combined LBM - PIBM - DEM showing that the PIBM could capture the feature of the particulate flows in fluid and was indeed a promising scheme for the solution of the fluid-particle interaction problems. In the last part, we have coupled DEM with averaged Navier-Stokes equations (NS) to study the particle transportation and wear process on the pipe wall. A case of pneumatic conveying was utilized to demonstrate the capability of the coupling model. The concrete pumping process was then simulated, where the hydraulic pressure and velocity distribution of the fluid phase were obtained. The frequency of the particles impacting on the bended pipe was monitored, a new time average collision intensity model based on impact force was proposed to investigate the wear process of the elbow. The location of maximum erosive wear damage in elbow was predicted. Furthermore, the influences of slurry velocity, bend orientation and angle of elbow on the puncture point location were discussed.Esta tesis se centra en la investigación numérica de sistemas partícula-líquido basado en la técnica Discrete Element Method (DEM). La tesis consta de tres partes, en cada una de las cuales se ha acoplado el método DEM con diferentes esquemas/solucionadores en la fase fluida. En la primera parte, hemos acoplado los métodos DEM con Direct Numerical Simulation (DNS) para estudiar casos de "particle-laden turbulent flow". Se investigó numéricamente el efecto de las colisiones en el comportamiento de las partículas en el flujo turbulento completamente desarrollado en un conducto cuadrado recto. Tres tamaños de partículas se consideraron con diámetros de 50, 100 y 500 micrometros. En primer lugar, el transporte de partículas por el flujo turbulento se estudió en la ausencia del efecto gravitacional. Entonces, la deposición de partículas se estudió bajo el efecto de la fuerza de gravedad normal a la pared, en el que se discutieron la influencia de la tasa de colisiones en re-suspensión de las partículas y la fase final de la distribución de partículas en el suelo del conducto, respectivamente. En la segunda parte, se ha acoplado los métodos DEM con Lattice Boltzmann Method (LBM) para estudiar la sedimentación de partículas en flujo laminar newtoniano. Un nuevo metodo combinado LBM-IBM-DEM se presentó y ha sido aplicado para modelar la sedimentación de dos partículas circulares bi-dimensionales en flujos Newtonianos incompresibles. Se estudiaron casos de sedimentación en una cavidad de una sola esfera, y sedimentación de dos partículas en un canal, las características de la velocidad de la partícula durante la sedimentación y cerca de la base fueron también examinados. En el último caso, un ejemplo numérico de sedimentación de 504 partículas fue finalmente presentado para demostrar la capacidad del método combinado. Además, se ha presentado un método "Particulate Immersed Boundary Method" (PIBM) para la simulación de flujos multifásicos partícula-fluido y ha sido evaluado en dos y tres dimensiones. En comparación con el método IBM convencional, se puede esperar con el mismo número de partículas y de malla un SpeedUp docenas de veces superior en la simulación bidimensional y cientos de veces en la simulación en tres dimensiones. Se llevaron a cabo simulaciones numéricas de la sedimentación de partículas en los flujos newtonianos basados en una combinación LBM - PIBM - DEM, mostrando que el PIBM podría capturar las características de los flujos de partículas en el líquido y fue en efecto un esquema prometedor para la solución de problemas de interacción fluido-partícula. En la última parte, se ha acoplado el método DEM con las ecuaciones promediadas de Navier-Stokes (NS) para estudiar el transporte de partículas y el proceso de desgaste en la pared de una tubería. Se utilizó un caso de transporte neumático para demostrar la capacidad del modelo acoplado. Entonces se simuló el proceso de bombeo de hormigón, de donde se obtuvo la presión hidráulica y la distribución de la velocidad de la fase fluida. Se monitoreó la frecuencia de impacto de las partículas en la tubería doblada, se propuso un nuevo modelo de intensidad de colisión promediado en tiempo para investigar el proceso de desgaste del codo basado en la fuerza de impacto. Se predijo la ubicación del daño máximo desgaste por erosión en el codo. Además, se examinaron las influencias de la velocidad de pulpa, la orientación y el ángulo de curvatura del codo en la ubicación del punto de punción.Postprint (published version
    corecore