9,455 research outputs found

    CHR Grammars

    Full text link
    A grammar formalism based upon CHR is proposed analogously to the way Definite Clause Grammars are defined and implemented on top of Prolog. These grammars execute as robust bottom-up parsers with an inherent treatment of ambiguity and a high flexibility to model various linguistic phenomena. The formalism extends previous logic programming based grammars with a form of context-sensitive rules and the possibility to include extra-grammatical hypotheses in both head and body of grammar rules. Among the applications are straightforward implementations of Assumption Grammars and abduction under integrity constraints for language analysis. CHR grammars appear as a powerful tool for specification and implementation of language processors and may be proposed as a new standard for bottom-up grammars in logic programming. To appear in Theory and Practice of Logic Programming (TPLP), 2005Comment: 36 pp. To appear in TPLP, 200

    When Are Tree Structures Necessary for Deep Learning of Representations?

    Full text link
    Recursive neural models, which use syntactic parse trees to recursively generate representations bottom-up, are a popular architecture. But there have not been rigorous evaluations showing for exactly which tasks this syntax-based method is appropriate. In this paper we benchmark {\bf recursive} neural models against sequential {\bf recurrent} neural models (simple recurrent and LSTM models), enforcing apples-to-apples comparison as much as possible. We investigate 4 tasks: (1) sentiment classification at the sentence level and phrase level; (2) matching questions to answer-phrases; (3) discourse parsing; (4) semantic relation extraction (e.g., {\em component-whole} between nouns). Our goal is to understand better when, and why, recursive models can outperform simpler models. We find that recursive models help mainly on tasks (like semantic relation extraction) that require associating headwords across a long distance, particularly on very long sequences. We then introduce a method for allowing recurrent models to achieve similar performance: breaking long sentences into clause-like units at punctuation and processing them separately before combining. Our results thus help understand the limitations of both classes of models, and suggest directions for improving recurrent models
    • …
    corecore