742 research outputs found

    A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems

    Get PDF
    In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users

    Wavelet-based multi-carrier code division multiple access systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Self-organisation in LTE networks : an investigation

    Get PDF
    Mobile telecommunications networks based on Long Term Evolution (LTE) technology promise faster throughput to their users. LTE networks are however susceptible to a phenomenon known as inter-cell interference which can greatly reduce the throughput of the network causing unacceptable degradation of performance for cell edge users. A number of approaches to mitigating or minimising inter-cell interference have been presented in the literature such as randomisation, cancellation and coordination. The possibility of coordination between network nodes in an LTE network is made possible through the introduction of the X2 network link. This thesis explores approaches to reducing the effect of inter-cell interference on the throughput of LTE networks by using the X2 link to coordinate the scheduling of radio resources. Three approaches to the reduction of inter-cell interference were developed. Localised organisation is a centralised scheme in which a scheduler is optimised by a Genetic Algorithm (GA) to reduce interference. Networked organisation makes use of the X2 communications link to enable the network nodes to exchange scheduling information in a way that lowers the level of interference across the whole network. Finally a more distributed and de-centralised approach is taken in which each of the network nodes optimises its own scheduling in coordination with its neighbours. An LTE network simulator was built to allow for experimental comparison between these techniques and a number of existing approaches and to serve as a test bed for future algorithm development. These approaches were found to significantly improve the throughput of the cell edge users who were most affected by intereference. In particular the networked aspect of these approaches yielded the best initial results showing clear improvement over the existing state of the art. The distributed approach shows significant promise given further development.EPSR
    • …
    corecore