4 research outputs found

    Device level communication libraries for high‐performance computing in Java

    Get PDF
    This is the peer reviewed version of the following article: Taboada, G. L., Touriño, J. , Doallo, R. , Shafi, A. , Baker, M. and Carpenter, B. (2011), Device level communication libraries for high‐performance computing in Java. Concurrency Computat.: Pract. Exper., 23: 2382-2403. doi:10.1002/cpe.1777, which has been published in final form at https://doi.org/10.1002/cpe.1777. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.[Abstract] Since its release, the Java programming language has attracted considerable attention from the high‐performance computing (HPC) community because of its portability, high programming productivity, and built‐in multithreading and networking support. As a consequence, several initiatives have been taken to develop a high‐performance Java message‐passing library to program distributed memory architectures, such as clusters. The performance of Java message‐passing applications relies heavily on the communications performance. Thus, the design and implementation of low‐level communication devices that support message‐passing libraries is an important research issue in Java for HPC. MPJ Express is our Java message‐passing implementation for developing high‐performance parallel Java applications. Its public release currently contains three communication devices: the first one is built using the Java New Input/Output (NIO) package for the TCP/IP; the second one is specifically designed for the Myrinet Express library on Myrinet; and the third one supports thread‐based shared memory communications. Although these devices have been successfully deployed in many production environments, previous performance evaluations of MPJ Express suggest that the buffering layer, tightly coupled with these devices, incurs a certain degree of copying overhead, which represents one of the main performance penalties. This paper presents a more efficient Java message‐passing communications device, based on Java Input/Output sockets, that avoids this buffering overhead. Moreover, this device implements several strategies, both in the communication protocol and in the HPC hardware support, which optimizes Java message‐passing communications. In order to evaluate its benefits, this paper analyzes the performance of this device comparatively with other Java and native message‐passing libraries on various high‐speed networks, such as Gigabit Ethernet, Scalable Coherent Interface, Myrinet, and InfiniBand, as well as on a shared memory multicore scenario. The reported communication overhead reduction encourages the upcoming incorporation of this device in MPJ ExpressMinisterio de Ciencia e Innovación; TIN2010-16735

    New tracks for future computational platforms for engineering applications

    Get PDF
    The purpose of this paper is to address new tracks for the future generation ofcomputational applications in mechanics and related branches. We advocate thatmodern computational tools will have to deal with complex strongly coupled multi-physics multi-scale problems. Moreover, heterogeneous distributed multi-processorssystems are used today for the numerical simulations. We pose here some basicideas for the design of modern computational applications. All the illustrations arebased on finite elements strategies implemented in a pure Java paradigm

    Design and implementation of Java bindings in Open MPI

    Full text link
    This paper describes the Java MPI bindings that have been included in the Open MPI distribution. Open MPI is one of the most popular implementations of MPI, the Message-Passing Interface, which is the predominant programming paradigm for parallel applications on distributed memory computers. We have added Java support to Open MPI, exposing MPI functionality to Java programmers. Our approach is based on the Java Native Interface, and has similarities with previous efforts, as well as important differences. This paper serves as a reference for the application program interface, and in addition we provide details of the internal implementation to justify some of the design decisions. We also show some results to assess the performance of the bindings. (C) 2016 Elsevier B.V. All rights reserved.We are indebted to Siegmar Grog for his exhaustive testing of the Java bindings. We also thank Ralph Castain for helping in the integration of the Java bindings in the Open MPI infrastructure. The NPB-MPJ benchmarks used in Section 5 were kindly provided by Guillermo Lopez Taboada. The first two authors were supported by the Spanish Ministry of Economy and Competitiveness under project number TIN2013-41049-P.Vega Gisbert, O.; Román Moltó, JE.; Squyres, JM. (2016). Design and implementation of Java bindings in Open MPI. Parallel Computing. 59:1-20. https://doi.org/10.1016/j.parco.2016.08.004S1205
    corecore