25,522 research outputs found

    Service oriented interactive media (SOIM) engines enabled by optimized resource sharing

    Get PDF
    In the same way as cloud computing, Software as a Service (SaaS) and Content Centric Networking (CCN) triggered a new class of software architectures fundamentally different from traditional desktop software, service oriented networking (SON) suggests a new class of media engine technologies, which we call Service Oriented Interactive Media (SOIM) engines. This includes a new approach for game engines and more generally interactive media engines for entertainment, training, educational and dashboard applications. Porting traditional game engines and interactive media engines to the cloud without fundamentally changing the architecture, as done frequently, can enable already various advantages of cloud computing for such kinds of applications, for example simple and transparent upgrading of content and unified user experience on all end-user devices. This paper discusses a new architecture for game engines and interactive media engines fundamentally designed for cloud and SON. Main advantages of SOIM engines are significantly higher resource efficiency, leading to a fraction of cloud hosting costs. SOIM engines achieve these benefits by multilayered data sharing, efficiently handling many input and output channels for video, audio, and 3D world synchronization, and smart user session and session slot management. Architecture and results of a prototype implementation of a SOIM engine are discussed

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    The PARSE Programming Paradigm. Part I: Software Development Methodology. Part II: Software Development Support Tools

    Get PDF
    The programming methodology of PARSE (parallel software environment), a software environment being developed for reconfigurable non-shared memory parallel computers, is described. This environment will consist of an integrated collection of language interfaces, automatic and semi-automatic debugging and analysis tools, and operating system —all of which are made more flexible by the use of a knowledge-based implementation for the tools that make up PARSE. The programming paradigm supports the user freely choosing among three basic approaches /abstractions for programming a parallel machine: logic-based descriptive, sequential-control procedural, and parallel-control procedural programming. All of these result in efficient parallel execution. The current work discusses the methodology underlying PARSE, whereas the companion paper, “The PARSE Programming Paradigm — II: Software Development Support Tools,” details each of the component tools

    On the descriptional complexity of iterative arrays

    Get PDF
    The descriptional complexity of iterative arrays (lAs) is studied. Iterative arrays are a parallel computational model with a sequential processing of the input. It is shown that lAs when compared to deterministic finite automata or pushdown automata may provide savings in size which are not bounded by any recursive function, so-called non-recursive trade-offs. Additional non-recursive trade-offs are proven to exist between lAs working in linear time and lAs working in real time. Furthermore, the descriptional complexity of lAs is compared with cellular automata (CAs) and non-recursive trade-offs are proven between two restricted classes. Finally, it is shown that many decidability questions for lAs are undecidable and not semidecidable

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Algebraic optimization of recursive queries

    Get PDF
    Over the past few years, much attention has been paid to deductive databases. They offer a logic-based interface, and allow formulation of complex recursive queries. However, they do not offer appropriate update facilities, and do not support existing applications. To overcome these problems an SQL-like interface is required besides a logic-based interface.\ud \ud In the PRISMA project we have developed a tightly-coupled distributed database, on a multiprocessor machine, with two user interfaces: SQL and PRISMAlog. Query optimization is localized in one component: the relational query optimizer. Therefore, we have defined an eXtended Relational Algebra that allows recursive query formulation and can also be used for expressing executable schedules, and we have developed algebraic optimization strategies for recursive queries. In this paper we describe an optimization strategy that rewrites regular (in the context of formal grammars) mutually recursive queries into standard Relational Algebra and transitive closure operations. We also describe how to push selections into the resulting transitive closure operations.\ud \ud The reason we focus on algebraic optimization is that, in our opinion, the new generation of advanced database systems will be built starting from existing state-of-the-art relational technology, instead of building a completely new class of systems

    Kolmogorov Complexity in perspective. Part II: Classification, Information Processing and Duality

    Get PDF
    We survey diverse approaches to the notion of information: from Shannon entropy to Kolmogorov complexity. Two of the main applications of Kolmogorov complexity are presented: randomness and classification. The survey is divided in two parts published in a same volume. Part II is dedicated to the relation between logic and information system, within the scope of Kolmogorov algorithmic information theory. We present a recent application of Kolmogorov complexity: classification using compression, an idea with provocative implementation by authors such as Bennett, Vitanyi and Cilibrasi. This stresses how Kolmogorov complexity, besides being a foundation to randomness, is also related to classification. Another approach to classification is also considered: the so-called "Google classification". It uses another original and attractive idea which is connected to the classification using compression and to Kolmogorov complexity from a conceptual point of view. We present and unify these different approaches to classification in terms of Bottom-Up versus Top-Down operational modes, of which we point the fundamental principles and the underlying duality. We look at the way these two dual modes are used in different approaches to information system, particularly the relational model for database introduced by Codd in the 70's. This allows to point out diverse forms of a fundamental duality. These operational modes are also reinterpreted in the context of the comprehension schema of axiomatic set theory ZF. This leads us to develop how Kolmogorov's complexity is linked to intensionality, abstraction, classification and information system.Comment: 43 page
    • …
    corecore