33,639 research outputs found

    Runtime-guided mitigation of manufacturing variability in power-constrained multi-socket NUMA nodes

    Get PDF
    This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493, SEV-2011-00067), by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243). This work was also partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-689878). Finally, the authors are grateful to the reviewers for their valuable comments, to the RoMoL team, to Xavier Teruel and Kallia Chronaki from the Programming Models group of BSC and the Computation Department of LLNL for their technical support and useful feedback.Peer ReviewedPostprint (published version

    Experimental Study of Remote Job Submission and Execution on LRM through Grid Computing Mechanisms

    Full text link
    Remote job submission and execution is fundamental requirement of distributed computing done using Cluster computing. However, Cluster computing limits usage within a single organization. Grid computing environment can allow use of resources for remote job execution that are available in other organizations. This paper discusses concepts of batch-job execution using LRM and using Grid. The paper discusses two ways of preparing test Grid computing environment that we use for experimental testing of concepts. This paper presents experimental testing of remote job submission and execution mechanisms through LRM specific way and Grid computing ways. Moreover, the paper also discusses various problems faced while working with Grid computing environment and discusses their trouble-shootings. The understanding and experimental testing presented in this paper would become very useful to researchers who are new to the field of job management in Grid.Comment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    HyBIS: Windows Guest Protection through Advanced Memory Introspection

    Full text link
    Effectively protecting the Windows OS is a challenging task, since most implementation details are not publicly known. Windows has always been the main target of malwares that have exploited numerous bugs and vulnerabilities. Recent trusted boot and additional integrity checks have rendered the Windows OS less vulnerable to kernel-level rootkits. Nevertheless, guest Windows Virtual Machines are becoming an increasingly interesting attack target. In this work we introduce and analyze a novel Hypervisor-Based Introspection System (HyBIS) we developed for protecting Windows OSes from malware and rootkits. The HyBIS architecture is motivated and detailed, while targeted experimental results show its effectiveness. Comparison with related work highlights main HyBIS advantages such as: effective semantic introspection, support for 64-bit architectures and for latest Windows (8.x and 10), advanced malware disabling capabilities. We believe the research effort reported here will pave the way to further advances in the security of Windows OSes

    Algorithms for Hierarchical and Semi-Partitioned Parallel Scheduling

    Get PDF
    We propose a model for scheduling jobs in a parallel machine setting that takes into account the cost of migrations by assuming that the processing time of a job may depend on the specific set of machines among which the job is migrated. For the makespan minimization objective, the model generalizes classical scheduling problems such as unrelated parallel machine scheduling, as well as novel ones such as semi-partitioned and clustered scheduling. In the case of a hierarchical family of machines, we derive a compact integer linear programming formulation of the problem and leverage its fractional relaxation to obtain a polynomial-time 2-approximation algorithm. Extensions that incorporate memory capacity constraints are also discussed

    GraphMP: An Efficient Semi-External-Memory Big Graph Processing System on a Single Machine

    Full text link
    Recent studies showed that single-machine graph processing systems can be as highly competitive as cluster-based approaches on large-scale problems. While several out-of-core graph processing systems and computation models have been proposed, the high disk I/O overhead could significantly reduce performance in many practical cases. In this paper, we propose GraphMP to tackle big graph analytics on a single machine. GraphMP achieves low disk I/O overhead with three techniques. First, we design a vertex-centric sliding window (VSW) computation model to avoid reading and writing vertices on disk. Second, we propose a selective scheduling method to skip loading and processing unnecessary edge shards on disk. Third, we use a compressed edge cache mechanism to fully utilize the available memory of a machine to reduce the amount of disk accesses for edges. Extensive evaluations have shown that GraphMP could outperform state-of-the-art systems such as GraphChi, X-Stream and GridGraph by 31.6x, 54.5x and 23.1x respectively, when running popular graph applications on a billion-vertex graph
    corecore