935 research outputs found

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Scheduling Parallel Jobs with Linear Speedup

    Get PDF
    We consider a scheduling problem where a set of jobs is distributed over parallel machines. The processing time of any job is dependent on the usage of a scarce renewable resource, e.g., personnel. An amount of k units of that resource can be allocated to the jobs at any time, and the more of that resource is allocated to a job, the smaller its processing time. The dependence of processing times on the amount of resources is linear for any job. The objective is to find a resource allocation and a schedule that minimizes the makespan. Utilizing an integer quadratic programming relaxation, we show how to obtain a (3+e)-approximation algorithm for that problem, for any e>0. This generalizes and improves previous results, respectively. Our approach relies on a fully polynomial time approximation scheme to solve the quadratic programming relaxation. This result is interesting in itself, because the underlying quadratic program is NP-hard to solve in general. We also briefly discuss variants of the problem and derive lower bounds.operations research and management science;

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    The complexity of generating robust resource-constrained baseline schedules.

    Get PDF
    Robust scheduling aims at the construction of a schedule that is protected against uncertain events. A stable schedule is a robust schedule that will change little when variations in the input parameters arise. Robustness can also be achieved by making the schedule makespan insensitive to variability. In this paper, we describe models for the generation of stable and insensitive baseline schedules for resource-constrained scheduling problems and present results on their complexity status. We start from a project scheduling viewpoint and derive results on machine scheduling sub-problems.Complexity; Information; Product scheduling; Robustness; sensitivity; stability;

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms
    • …
    corecore