227 research outputs found

    Single-machine scheduling with stepwise tardiness costs and release times

    Get PDF
    We study a scheduling problem that belongs to the yard operations component of the railroad planning problems, namely the hump sequencing problem. The scheduling problem is characterized as a single-machine problem with stepwise tardiness cost objectives. This is a new scheduling criterion which is also relevant in the context of traditional machine scheduling problems. We produce complexity results that characterize some cases of the problem as pseudo-polynomially solvable. For the difficult-to-solve cases of the problem, we develop mathematical programming formulations, and propose heuristic algorithms. We test the formulations and heuristic algorithms on randomly generated single-machine scheduling problems and real-life datasets for the hump sequencing problem. Our experiments show promising results for both sets of problems

    Parallel Robot Scheduling with Genetic Algorithms

    Get PDF

    A new hybrid meta-heuristic algorithm for solving single machine scheduling problems

    Get PDF
    A dissertation submitted in partial ful lment of the degree of Master of Science in Engineering (Electrical) (50/50) in the Faculty of Engineering and the Built Environment Department of Electrical and Information Engineering May 2017Numerous applications in a wide variety of elds has resulted in a rich history of research into optimisation for scheduling. Although it is a fundamental form of the problem, the single machine scheduling problem with two or more objectives is known to be NP-hard. For this reason we consider the single machine problem a good test bed for solution algorithms. While there is a plethora of research into various aspects of scheduling problems, little has been done in evaluating the performance of the Simulated Annealing algorithm for the fundamental problem, or using it in combination with other techniques. Speci cally, this has not been done for minimising total weighted earliness and tardiness, which is the optimisation objective of this work. If we consider a mere ten jobs for scheduling, this results in over 3.6 million possible solution schedules. It is thus of de nite practical necessity to reduce the search space in order to nd an optimal or acceptable suboptimal solution in a shorter time, especially when scaling up the problem size. This is of particular importance in the application area of packet scheduling in wireless communications networks where the tolerance for computational delays is very low. The main contribution of this work is to investigate the hypothesis that inserting a step of pre-sampling by Markov Chain Monte Carlo methods before running the Simulated Annealing algorithm on the pruned search space can result in overall reduced running times. The search space is divided into a number of sections and Metropolis-Hastings Markov Chain Monte Carlo is performed over the sections in order to reduce the search space for Simulated Annealing by a factor of 20 to 100. Trade-o s are found between the run time and number of sections of the pre-sampling algorithm, and the run time of Simulated Annealing for minimising the percentage deviation of the nal result from the optimal solution cost. Algorithm performance is determined both by computational complexity and the quality of the solution (i.e. the percentage deviation from the optimal). We nd that the running time can be reduced by a factor of 4.5 to ensure a 2% deviation from the optimal, as compared to the basic Simulated Annealing algorithm on the full search space. More importantly, we are able to reduce the complexity of nding the optimal from O(n:n!) for a complete search to O(nNS) for Simulated Annealing to O(n(NMr +NS)+m) for the input variables n jobs, NS SA iterations, NM Metropolis- Hastings iterations, r inner samples and m sections.MT 201

    Algorithms for a class of single-machine weighted tardiness and earliness problems

    Full text link
    We address the problem of determining schedules for static, single-machine scheduling problems where the objective is to minimize the sum of weighted tardiness and weighted earliness. We develop optimal and heuristic procedures for the special case of weights that are proportional to the processing times of the respective jobs. The optimal procedure uses dominance properties to reduce the number of sequences that must be considered, and some of the heuristic use these properties as a basis for constructing good initial sequences. A pairwise interchange procedure is used to improve the heuristic solutions. An experimental study shows that the heuristic procedures perform very well.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29324/1/0000389.pd

    Exact and Heuristic Algorithms for the Job Shop Scheduling Problem with Earliness and Tardiness Over a Common Due Date

    Get PDF
    Scheduling has turned out to be a fundamental activity for both production and service organizations. As competitive markets emerge, Just-In-Time (JIT) production has obtained more importance as a way of rapidly responding to continuously changing market forces. Due to their realistic assumptions, job shop production environments have gained much research effort among scheduling researchers. This research develops exact and heuristic methods and algorithms to solve the job shop scheduling problem when the objective is to minimize both earliness and tardiness costs over a common due date. The objective function of minimizing earliness and tardiness costs captures the essence of the JIT approach in job shops. A dynamic programming procedure is developed to solve smaller instances of the problem, and a Multi-Agent Systems approach is developed and implemented to solve the problem for larger instances since this problem is known to be NP-Hard in a strong sense. A combinational auction-based approach using a Mixed-Integer Linear Programming (MILP) model to construct and evaluate the bids is proposed. The results showed that the proposed combinational auction-based algorithm is able to find optimal solutions for problems that are balanced in processing times across machines. A price discrimination process is successfully implemented to deal with unbalanced problems. The exact and heuristic procedures developed in this research are the first steps to create a structured approach to handle this problem and as a result, a set of benchmark problems will be available to the scheduling research community

    Alternative representations and multirecombined approaches for solving the single-machine common due date problem

    Get PDF
    Balance between exploitation and exploration is a main factor influencing convergence in an evolutionary algorithm. In order to improve this balance new trends in evolutionary algorithms make use of multi-recombinative approaches, known as multiple-crossovers-on-multiple-parents (MCMP). The use of a breeding individual (stud) which repeatedly mates individuals that randomly immigrates to a mating pool can further help the balance between exploration and exploitation. For the single-machine common due date problem an optimal schedule is V-shaped around the due date. To produce V-shaped schedules an appropriate binary representation, associated with a schedule builder, can be used. In this representation each bit indicates if a corresponding job belongs either to the tardy or the non-tardy set. When contrasted with commonly used permutation representations this approach reduces the searching space from n! to 2n. This paper compares three different implementations and shows their performance on a set of instances for the single machine scheduling problem with a common due date. Two of these approaches are based on a binary representation to form V-shaped schedules while the other is based on permutations. All these approaches apply different multirecombined methods. Details on implementation and results are discussed.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI

    Flowshop scheduling problems with due date related objectives: A review of the literature

    Get PDF
    3rd International Conference on Industrial Engineering and Industrial Management XIII Congreso de Ingeniería de Organización Barcelona-Terrassa, September 2nd-4th 200
    corecore