519,571 research outputs found

    A Neural Circuit Model for Prospective Control of Interceptive Reaching

    Full text link
    Two prospective controllers of hand movements in catching -- both based on required velocity control -- were simulated. Under certain conditions, this required velocity controlled to overshoots of the future interception point. These overshoots were absent in pertinent experiments. To remedy this shortcoming, the required velocity model was reformulated in terms of a neural network, the Vector Integration To Endpoint model, to create a Required Velocity Integration To Endpoint modeL Addition of a parallel relative velocity channel, resulting in the Relative and Required Velocity Integration To Endpoint model, provided a better account for the experimentally observed kinematics than the existing, purely behavioral models. Simulations of reaching to intercept decelerating and accelerating objects in the presence of background motion were performed to make distinct predictions for future experiments.Vrije Universiteit (Gerrit-Jan van Jngen-Schenau stipend of the Faculty of Human Movement Sciences); Royal Netherlands Academy of Arts and Sciences; Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409

    Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media

    Get PDF
    This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is dis-cretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence

    Model For The Dynamics Of A Bubble Undergoing Small Shape Oscillations Between Elastic Layers

    Get PDF
    A model is presented for a pulsating and translating gas bubble in a channel formed by two soft elastic parallel layers. The bubble is free to undergo small shape deformations. Coupled nonlinear second-order differential equations are obtained for the shape and position of the bubble, and numerical integration of an expression for the liquid velocity at the layer interfaces yields an estimate of their displacement. Simulations reveal behavior consistent with laboratory observations.Applied Research Laboratorie

    ParaExp using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations

    Full text link
    Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into sub-intervals and computes the solution on each sub-interval in parallel. The overall solution is decomposed into a particular solution defined on each sub-interval with zero initial conditions and a homogeneous solution propagated by the matrix exponential applied to the initial conditions. The efficiency of the method depends on fast approximations of this matrix exponential based on recent results from numerical linear algebra. This paper deals with the application of ParaExp in combination with Leapfrog to electromagnetic wave problems in time-domain. Numerical tests are carried out for a simple toy problem and a realistic spiral inductor model discretized by the Finite Integration Technique.Comment: Corrected typos. arXiv admin note: text overlap with arXiv:1607.0036

    Characterizing the firing properties of an adaptive analog VLSI neuron

    Get PDF
    Ben Dayan Rubin D, Chicca E, Indiveri G. Characterizing the firing properties of an adaptive analog VLSI neuron. Biologically Inspired Approaches to Advanced Information Technology. 2004;3141:189-200.We describe the response properties of a compact, low power, analog circuit that implements a model of a leaky-Integrate & Fire (I&F) neuron, with spike-frequency adaptation, refractory period and voltage threshold modulation properties. We investigate the statistics of the circuit's output response by modulating its operating parameters, like refractory period and adaptation level and by changing the statistics of the input current. The results show a clear match with theoretical prediction and neurophysiological data in a given range of the parameter space. This analysis defines the chip's parameter working range and predicts its behavior in case of integration into large massively parallel very-large-scale-integration (VLSI) networks

    Conformally Invariant Braneworld and the Cosmological Constant

    Get PDF
    A six dimensional braneworld scenario based on a model describing the interaction of gravity, gauge fields and 3+1 branes in a conformally invariant way is described. The action of the model is defined using a measure of integration built of degrees of freedom independent of the metric. There is no need to fine tune any bulk cosmological constant or the tension of the two (in the scenario described here) parallel branes to obtain zero cosmological constant, the only solutions are those with zero 4-D cosmological constant. The two extra dimensions are compactified in a "football" fashion and the branes lie on the two opposite poles of the compact "football-shaped" sphere.Comment: 10 pages, latex, no figures, few typos correcte
    corecore