179 research outputs found

    Indexing Iris Database Using Multi-Dimensional R-Trees

    Get PDF
    Iris is one of the most widely used biometric modality for recognition due to its reliability, non-invasive characteristic, speed and performance. The patterns remain stable throughout the lifetime of an individual. Attributable to these advantages, the application of iris biometric is increasingly encouraged by various commercial as well as government agencies. Indexing is done to identify and retrieve a small subset of candidate data from the database of iris data of individuals in order to determine a possible match. Since the database is extremely large, it is necessary to find fast and efficient indexing methods. In this thesis, an efficient local feature based indexing approach is proposed using clustered scale invariant feature transform (SIFT) keypoints, that achieves invariance to similarity transformations, illumination and occlusion. These cluster centers are used to construct R-trees for indexing. This thesis proposes an application of R-trees for iris database indexing. The system is tested using publicly available BATH and CASIA-IrisV4 databases

    Parallel algorithms for iris biometrics

    Get PDF
    Iris biometrics involves preprocessing, feature extraction and identification phase. In this thesis,an effort has been made to introduce parallelism in feature extraction and identification phases. Local features invariant to scale, rotation, illumination are extracted using Scale Invariant Feature Transform (SIFT). In order to achieve speedup during feature extraction, parallelism has been introduced during scale space construction using SIMD hypercube. The parallel time complexity is O(N2) whereas sequential algorithm performs with complexity of O(lsN2, where l is the number of octaves, s is the number of Gaussian scale levels within an octave and N × N is the size of iris image

    Iris Identification using Keypoint Descriptors and Geometric Hashing

    Get PDF
    Iris is one of the most reliable biometric trait due to its stability and randomness. Conventional recognition systems transform the iris to polar coordinates and perform well for co-operative databases. However, the problem aggravates to manifold for recognizing non-cooperative irises. In addition, the transformation of iris to polar domain introduces aliasing effect. In this thesis, the aforementioned issues are addressed by considering Noise Independent Annular Iris for feature extraction. Global feature extraction approaches are rendered as unsuitable for annular iris due to change in scale as they could not achieve invariance to ransformation and illumination. On the contrary, local features are invariant to image scaling, rotation and partially invariant to change in illumination and viewpoint. To extract local features, Harris Corner Points are detected from iris and matched using novel Dual stage approach. Harris corner improves accuracy but fails to achieve scale invariance. Further, Scale Invariant Feature Transform (SIFT) has been applied to annular iris and results are found to be very promising. However, SIFT is computationally expensive for recognition due to higher dimensional descriptor. Thus, a recently evolved keypoint descriptor called Speeded Up Robust Features (SURF) is applied to mark performance improvement in terms of time as well as accuracy. For identification, retrieval time plays a significant role in addition to accuracy. Traditional indexing approaches cannot be applied to biometrics as data are unstructured. In this thesis, two novel approaches has been developed for indexing iris database. In the first approach, Energy Histogram of DCT coefficients is used to form a B-tree. This approach performs well for cooperative databases. In the second approach, indexing is done using Geometric Hashing of SIFT keypoints. The latter indexing approach achieves invariance to similarity transformations, illumination and occlusion and performs with an accuracy of more than 98% for cooperative as well as non-cooperative databases

    Comparative analysis of hashing schemes for Iris identification using local features

    Get PDF
    Iris is one of the most reliable biometric trait due to its stability and randomness. Traditional recognition systems transform the iris to polar coordinates and perform well for co-operative databases. However, the problem aggravates to manifold for recognizing non-cooperative irises. In addition, the transformation of iris to polar domain introduces aliasing eect. In this thesis, Noise Independent Annular Iris is used for feature extraction. Global feature extraction approaches are rendered as unsuitable for annular iris due to change in scale as they could not achieve invariance to transformation and illumination. On the contrary, local features are invariant to image scaling, rotation, and partially invariant to change in illumination and viewpoint. To extract local features, Scale Invariant Feature Transform (SIFT) has been applied to annular iris. However, SIFT is computationally expensive for recognition due to higher dimensional descriptor. Thus, a keypoint descriptor called Speeded Up Robust Features (SURF) is applied to mark performance improvement in terms of time as well as accuracy. At last, a recently developed Binary Robust Invariant Scalable Keypoints (BRISK) is applied. BRISK performs at a dramatically lower computational cost than SIFT and SURF. For identication, retrieval time plays a signicant role in addition to accuracy. Traditional indexing approaches cannot be applied to biometrics as data are un- structured. In this thesis, two novel approaches has been applied for indexing iris database. In the rst approach, indexing is done using Geometric Hashing of local feature keypoints. This approach achieves invariance to similarity transformations, illumination, and occlusion and performs with a good accuracy for cooperative as well as non-cooperative databases, but it takes larger time for recognition. In the second approach, enhanced geometric hashing is applied using local keypoint descrip- tors of annular iris for dierent databases. Comparative analysis shows that enhanced geometric hashing is more accurate and faster than traditional geometric hashing

    Indexing techniques for fingerprint and iris databases

    Get PDF
    This thesis addresses the problem of biometric indexing in the context of fingerprint and iris databases. In large scale authentication system, the goal is to determine the identity of a subject from a large set of identities. Indexing is a technique to reduce the number of candidate identities to be considered by the identification algorithm. The fingerprint indexing technique (for closed set identification) proposed in this thesis is based on a combination of minutiae and ridge features. Experiments conducted on the FVC2002 and FVC2004 databases indicate that the inclusion of ridge features aids in enhancing indexing performance. The thesis also proposes three techniques for iris indexing (for closed set identification). The first technique is based on iriscodes. The second technique utilizes local binary patterns in the iris texture. The third technique analyzes the iris texture based on a pixel-level difference histogram. The ability to perform indexing at the texture level avoids the computational complexity involved in encoding and is, therefore, more attractive for iris indexing. Experiments on the CASIA 3.0 database suggest the potential of these schemes to index large-scale iris databases

    IRDO: Iris Recognition by Fusion of DTCWT and OLBP

    Get PDF
    Iris Biometric is a physiological trait of human beings. In this paper, we propose Iris an Recognition using Fusion of Dual Tree Complex Wavelet Transform (DTCWT) and Over Lapping Local Binary Pattern (OLBP) Features. An eye is preprocessed to extract the iris part and obtain the Region of Interest (ROI) area from an iris. The complex wavelet features are extracted for region from the Iris DTCWT. OLBP is further applied on ROI to generate features of magnitude coefficients. The resultant features are generated by fusing DTCWT and OLBP using arithmetic addition. The Euclidean Distance (ED) is used to compare test iris with database iris features to identify a person. It is observed that the values of Total Success Rate (TSR) and Equal Error Rate (EER) are better in the case of proposed IRDO compared to the state-of-the art technique

    Creating a virtual slide map from sputum smear images for region-of-interest localisation in automated microscopy

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 140-144).Automated microscopy for the detection of tuberculosis (TB) in sputum smears seeks to address the strain on technicians in busy TB laboratories and to achieve faster diagnosis in countries with a heavy TB burden. As a step in the development of an automated microscope, the project described here was concerned with microscope auto-positioning; this primarily involves generating a point of reference on a slide, which can be used to automatically bring desired fields on the slide to the field-of-view of the microscope for re-examination. The study was carried out using a conventional microscope and Ziehl- Neelsen (ZN) stained sputum smear slides. All images were captured at 40x magnification. A digital replication, the virtual slide map, of an actual slide was constructed by combining the manually acquired images of the different fields of the slide. The geometric hashing scheme was found to be suitable for auto-stitching a large number of images (over 300 images) to form a virtual slide map. An object recognition algorithm, which was also based on the geometric hashing technique, was used to localise a query image (the current field-of-view) on the virtual slide map. This localised field-of-view then served as the point of reference. The true positive (correct localisation of a query image on the virtual slide map) rate achieved by the algorithm was above 88% even for noisy query images captured at slide orientations up to 26°. The image registration error, computed as the average mean square error, was less than 14 pixel2 (corresponding to 1.02 μm2 and 0.001% error in an image measuring 1030 x 1300 pixels) corresponding to a root mean square registration error of 3.7 pixels. Superior image registration accuracy was obtained at the expense of time using the scale invariant feature transform (SIFT), with a image registration error of 1 pixel2 (0.07 μm2). The object recognition algorithm is inherently robust to changes in slide orientation and placement, which are likely to occur in practice as it is impossible to place the slide in exactly the same position on the microscope at different times. Moreover, the algorithm showed high tolerance to illumination changes and robustness to noise

    Biometric Identification Systems: Feature Level Clustering of Large Biometric Data and DWT Based Hash Coded Bar Biometric System

    Get PDF
    Biometric authentication systems are fast replacing conventional identification schemes such as passwords and PIN numbers. This paper introduces a novel matching scheme that uses a image hash scheme. It uses Discrete Wavelet Transformation (DWT) of biometric images and randomized processing strategies for hashing. In this scheme the input image is decomposed into approximation, vertical, horizontal and diagonal coefficients using the discrete wavelet transform. The algorithm converts images into binary strings and is robust against compression, distortion and other transformations. As a case study the system is tested on ear database and is outperforming with an accuracy of 96.37% with considerably low FAR of 0.17%. The performance shows that the system can be deployed for high level security applications
    corecore