105 research outputs found

    Distributed and Lightweight Meta-heuristic Optimization method for Complex Problems

    Get PDF
    The world is becoming more prominent and more complex every day. The resources are limited and efficiently use them is one of the most requirement. Finding an Efficient and optimal solution in complex problems needs to practical methods. During the last decades, several optimization approaches have been presented that they can apply to different optimization problems, and they can achieve different performance on various problems. Different parameters can have a significant effect on the results, such as the type of search spaces. Between the main categories of optimization methods (deterministic and stochastic methods), stochastic optimization methods work more efficient on big complex problems than deterministic methods. But in highly complex problems, stochastic optimization methods also have some issues, such as execution time, convergence to local optimum, incompatible with distributed systems, and dependence on the type of search spaces. Therefore this thesis presents a distributed and lightweight metaheuristic optimization method (MICGA) for complex problems focusing on four main tracks. 1) The primary goal is to improve the execution time by MICGA. 2) The proposed method increases the stability and reliability of the results by using the multi-population strategy in the second track. 3) MICGA is compatible with distributed systems. 4) Finally, MICGA is applied to the different type of optimization problems with other kinds of search spaces (continuous, discrete and order based optimization problems). MICGA has been compared with other efficient optimization approaches. The results show the proposed work has been achieved enough improvement on the main issues of the stochastic methods that are mentioned before.Maailmasta on päivä päivältä tulossa yhä monimutkaisempi. Resurssit ovat rajalliset, ja siksi niiden tehokas käyttö on erittäin tärkeää. Tehokkaan ja optimaalisen ratkaisun löytäminen monimutkaisiin ongelmiin vaatii tehokkaita käytännön menetelmiä. Viime vuosikymmenien aikana on ehdotettu useita optimointimenetelmiä, joilla jokaisella on vahvuutensa ja heikkoutensa suorituskyvyn ja tarkkuuden suhteen erityyppisten ongelmien ratkaisemisessa. Parametreilla, kuten hakuavaruuden tyypillä, voi olla merkittävä vaikutus tuloksiin. Optimointimenetelmien pääryhmistä (deterministiset ja stokastiset menetelmät) stokastinen optimointi toimii suurissa monimutkaisissa ongelmissa tehokkaammin kuin deterministinen optimointi. Erittäin monimutkaisissa ongelmissa stokastisilla optimointimenetelmillä on kuitenkin myös joitain ongelmia, kuten korkeat suoritusajat, päätyminen paikallisiin optimipisteisiin, yhteensopimattomuus hajautetun toteutuksen kanssa ja riippuvuus hakuavaruuden tyypistä. Tämä opinnäytetyö esittelee hajautetun ja kevyen metaheuristisen optimointimenetelmän (MICGA) monimutkaisille ongelmille keskittyen neljään päätavoitteeseen: 1) Ensisijaisena tavoitteena on pienentää suoritusaikaa MICGA:n avulla. 2) Lisäksi ehdotettu menetelmä lisää tulosten vakautta ja luotettavuutta käyttämällä monipopulaatiostrategiaa. 3) MICGA tukee hajautettua toteutusta. 4) Lopuksi MICGA-menetelmää sovelletaan erilaisiin optimointiongelmiin, jotka edustavat erityyppisiä hakuavaruuksia (jatkuvat, diskreetit ja järjestykseen perustuvat optimointiongelmat). Työssä MICGA-menetelmää verrataan muihin tehokkaisiin optimointimenetelmiin. Tulokset osoittavat, että ehdotetulla menetelmällä saavutetaan selkeitä parannuksia yllä mainittuihin stokastisten menetelmien pääongelmiin liittyen

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Energy-aware evolutionary optimization for cyber-physical systems in Industry 4.0

    Get PDF

    Applied Methuerstic computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Adaptive Computing Systems for Aerospace

    Get PDF
    RÉSUMÉ En raison de leur complexité croissante, les systèmes informatiques modernes nécessitent de nouvelles méthodologies permettant d’automatiser leur conception et d’améliorer leurs performances. L’espace, en particulier, constitue un environnement très défavorable au maintien de la performance de ces systèmes : sans protection des rayonnements ionisants et des particules, l’électronique basée sur CMOS peut subir des erreurs transitoires, une dégradation des performances et une usure accélérée causant ultimement une défaillance du système. Les approches traditionnellement adoptees pour garantir la fiabilité du système et prolonger sa durée de vie sont basées sur la redondance, généralement établie durant la conception. En revanche, ces solutions sont coûteuses et parfois inefficaces, puisqu'elles augmentent la taille et la complexité du système, l'exposant à des risques plus élevés de surchauffe et d'erreurs. Les conséquences de ces limites sont d'autant plus importantes lorsqu'elles s’appliquent aux systèmes critiques (e.g., contraintes par le temps ou dont l’accès est limité) qui doivent être en mesure de prendre des décisions sans intervention humaine. Sur la base de ces besoins et limites, le développement en aérospatial de systèmes informatiques avec capacités adaptatives peut être considéré comme la solution la plus appropriée pour les dispositifs intégrés à haute performance. L’informatique auto-adaptative offre un potentiel sans égal pour assurer la création d’une génération d’ordinateurs plus intelligents et fiables. Qui plus est, elle répond aux besoins modernes de concevoir et programmer des systèmes informatiques capables de répondre à des objectifs en conflit. En nous inspirant des domaines de l’intelligence artificielle et des systèmes reconfigurables, nous aspirons à développer des systèmes informatiques auto-adaptatifs pour l’aérospatiale qui répondent aux enjeux et besoins actuels. Notre objectif est d’améliorer l’efficacité de ces systèmes, leur tolerance aux pannes et leur capacité de calcul. Afin d’atteindre cet objectif, une analyse expérimentale et comparative des algorithmes les plus populaires pour l’exploration multi-objectifs de l’espace de conception est d’abord effectuée. Les algorithmes ont été recueillis suite à une revue de la plus récente littérature et comprennent des méthodes heuristiques, évolutives et statistiques. L’analyse et la comparaison de ceux-ci permettent de cerner les forces et limites de chacun et d'ainsi définir des lignes directrices favorisant un choix optimal d’algorithmes d’exploration. Pour la création d’un système d’optimisation autonome—permettant le compromis entre plusieurs objectifs—nous exploitons les capacités des modèles graphiques probabilistes. Nous introduisons une méthodologie basée sur les modèles de Markov cachés dynamiques, laquelle permet d’équilibrer la disponibilité et la durée de vie d’un système multiprocesseur. Ceci est obtenu en estimant l'occurrence des erreurs permanentes parmi les erreurs transitoires et en migrant dynamiquement le calcul sur les ressources supplémentaires en cas de défaillance. La nature dynamique du modèle rend celui-ci adaptable à différents profils de mission et taux d’erreur. Les résultats montrent que nous sommes en mesure de prolonger la durée de vie du système tout en conservant une disponibilité proche du cas idéal. En raison des contraintes de temps rigoureuses imposées par les systèmes aérospatiaux, nous étudions aussi l’optimisation de la tolérance aux pannes en présence d'exigences d’exécution en temps réel. Nous proposons une méthodologie pour améliorer la fiabilité du calcul en présence d’erreurs transitoires pour les tâches en temps réel d’un système multiprocesseur homogène avec des capacités de réglage de tension et de fréquence. Dans ce cadre, nous définissons un nouveau compromis probabiliste entre la consommation d’énergie et la tolérance aux erreurs. Comme nous reconnaissons que la résilience est une propriété d’intérêt omniprésente (par exemple, pour la conception et l’analyse de systems complexes génériques), nous adaptons une définition formelle de celle-ci à un cadre probabiliste dérivé à nouveau de modèles de Markov cachés. Ce cadre nous permet de modéliser de façon réaliste l’évolution stochastique et l’observabilité partielle des phénomènes du monde réel. Nous proposons un algorithme permettant le calcul exact efficace de l’étape essentielle d’inférence laquelle est requise pour vérifier des propriétés génériques. Pour démontrer la flexibilité de cette approche, nous la validons, entre autres, dans le contexte d’un système informatisé reconfigurable pour l’aérospatiale. Enfin, nous étendons la portée de nos recherches vers la robotique et les systèmes multi-agents, deux sujets dont la popularité est croissante en exploration spatiale. Nous abordons le problème de l’évaluation et de l’entretien de la connectivité dans le context distribué et auto-adaptatif de la robotique en essaim. Nous examinons les limites des solutions existantes et proposons une nouvelle méthodologie pour créer des géométries complexes connectées gérant plusieurs tâches simultanément. Des contributions additionnelles dans plusieurs domaines sont résumés dans les annexes, nommément : (i) la conception de CubeSats, (ii) la modélisation des rayonnements spatiaux pour l’injection d’erreur dans FPGA et (iii) l’analyse temporelle probabiliste pour les systèmes en temps réel. À notre avis, cette recherche constitue un tremplin utile vers la création d’une nouvelle génération de systèmes informatiques qui exécutent leurs tâches d’une façon autonome et fiable, favorisant une exploration spatiale plus simple et moins coûteuse.----------ABSTRACT Today's computer systems are growing more and more complex at a pace that requires the development of novel and more effective methodologies to automate their design. Space, in particular, represents a challenging environment: without protection from ionizing and particle radiation, CMOS-based electronics are subject to transients faults, performance degradation, accelerated wear, and, ultimately, system failure. Traditional approaches adopted to guarantee reliability and extended lifetime are based on redundancy that is established at design-time. These solutions are expensive and sometimes inefficient, as they increase the complexity and size of a system, exposing it to higher risks of overheating and incurring in radiation-induced errors. Moreover, critical systems---e.g., time-constrained ones and those where access is limited---must be able to cope with pivotal situations without relying on human intervention. Hence, the emerging interest in computer systems with adaptive capabilities as the most suitable solution for novel high-performance embedded devices for aerospace. Self-adaptive computing carries unmatched potential and great promises for the creation of a new generation of smart, more reliable computers, and it addresses the challenge of designing and programming modern and future computer systems that must meet conflicting goals. Drawing from the fields of artificial intelligence and reconfigurable systems, we aim at developing self-adaptive computer systems for aerospace. Our goal is to improve their efficiency, fault-tolerance, and computational capabilities. The first step in this research is the experimental analysis of the most popular multi-objective design-space exploration algorithms for high-level design. These algorithms were collected from the recent literature and include heuristic, evolutionary, and statistical methods. Their comparison provides insights that we use to define guidelines for the choice of the most appropriate optimization algorithms, given the features of the design space. For the creation of a self-managing optimization framework---enabling the adaptive trade-off of multiple objectives---we leverage the tools of probabilistic graphical models. We introduce a mechanism based on dynamic hidden Markov models that balances the availability and lifetime of multiprocessor systems. This is achieved by estimating the occurrence of permanent faults amid transient faults, and by dynamically migrating the computation on excess resources, when failure occurs. The dynamic nature of the model makes it adjustable to different mission profiles and fault rates. The results show that we are able to lead systems to extended lifetimes, while keeping their availability close to ideal. On account of the stringent timing constraints imposed by aerospace systems, we then investigate the optimization of fault-tolerance under real-time requirements. We propose a methodology to improve the reliability of computation in the presence of transient errors when considering the mapping of real-time tasks on a homogeneous multiprocessor system with voltage and frequency scaling capabilities. In this framework, we take advantage of probability theory to define a novel trade-off between power consumption and fault-tolerance. As we recognize that resilience is a pervasive property of interest (e.g., for the design and analysis of generic complex systems), we adapt a formal definition of it to one more probabilistic framework derived from hidden Markov models. This allows us to realistically model the stochastic evolution and partial observability of complex real-world environments. Within this framework, we propose an efficient algorithm for the exact computation of the essential inference step required to construct generic property checking. To demonstrate the flexibility of this approach, we validate it in the context, among others, of a self-aware, reconfigurable computing system for aerospace. Finally, we move the scope of our research towards robotics and multi-agent systems: a topic of thriving popularity for space exploration. We tackle the problem of connectivity assessment and maintenance in the distributed and self-adaptive context of swarm robotics. We review the limitations of existing solutions and propose a novel methodology to create connected complex geometries for multiple task coverage. Additional contributions in the areas of (i) CubeSat design, (ii) the modelling of space radiation for FPGA fault-injection, and (iii) probabilistic timing analysis for real-time systems are summarized in the appendices. In the author's opinion, this research provides a number of useful stepping stones for the creation of a new generation of computing systems that autonomously---and reliably---perform their tasks for longer periods of time, fostering simpler and cheaper space exploration

    Descoberta de recursos para sistemas de escala arbitrarias

    Get PDF
    Doutoramento em InformáticaTecnologias de Computação Distribuída em larga escala tais como Cloud, Grid, Cluster e Supercomputadores HPC estão a evoluir juntamente com a emergência revolucionária de modelos de múltiplos núcleos (por exemplo: GPU, CPUs num único die, Supercomputadores em single die, Supercomputadores em chip, etc) e avanços significativos em redes e soluções de interligação. No futuro, nós de computação com milhares de núcleos podem ser ligados entre si para formar uma única unidade de computação transparente que esconde das aplicações a complexidade e a natureza distribuída desses sistemas com múltiplos núcleos. A fim de beneficiar de forma eficiente de todos os potenciais recursos nesses ambientes de computação em grande escala com múltiplos núcleos ativos, a descoberta de recursos é um elemento crucial para explorar ao máximo as capacidade de todos os recursos heterogéneos distribuídos, através do reconhecimento preciso e localização desses recursos no sistema. A descoberta eficiente e escalável de recursos ´e um desafio para tais sistemas futuros, onde os recursos e as infira-estruturas de computação e comunicação subjacentes são altamente dinâmicas, hierarquizadas e heterogéneas. Nesta tese, investigamos o problema da descoberta de recursos no que diz respeito aos requisitos gerais da escalabilidade arbitrária de ambientes de computação futuros com múltiplos núcleos ativos. A principal contribuição desta tese ´e a proposta de uma entidade de descoberta de recursos adaptativa híbrida (Hybrid Adaptive Resource Discovery - HARD), uma abordagem de descoberta de recursos eficiente e altamente escalável, construída sobre uma sobreposição hierárquica virtual baseada na auto-organizaçãoo e auto-adaptação de recursos de processamento no sistema, onde os recursos computacionais são organizados em hierarquias distribuídas de acordo com uma proposta de modelo de descriçãoo de recursos multi-camadas hierárquicas. Operacionalmente, em cada camada, que consiste numa arquitetura ponto-a-ponto de módulos que, interagindo uns com os outros, fornecem uma visão global da disponibilidade de recursos num ambiente distribuído grande, dinâmico e heterogéneo. O modelo de descoberta de recursos proposto fornece a adaptabilidade e flexibilidade para executar consultas complexas através do apoio a um conjunto de características significativas (tais como multi-dimensional, variedade e consulta agregada) apoiadas por uma correspondência exata e parcial, tanto para o conteúdo de objetos estéticos e dinâmicos. Simulações mostram que o HARD pode ser aplicado a escalas arbitrárias de dinamismo, tanto em termos de complexidade como de escala, posicionando esta proposta como uma arquitetura adequada para sistemas futuros de múltiplos núcleos. Também contribuímos com a proposta de um regime de gestão eficiente dos recursos para sistemas futuros que podem utilizar recursos distribuíos de forma eficiente e de uma forma totalmente descentralizada. Além disso, aproveitando componentes de descoberta (RR-RPs) permite que a nossa plataforma de gestão de recursos encontre e aloque dinamicamente recursos disponíeis que garantam os parâmetros de QoS pedidos.Large scale distributed computing technologies such as Cloud, Grid, Cluster and HPC supercomputers are progressing along with the revolutionary emergence of many-core designs (e.g. GPU, CPUs on single die, supercomputers on chip, etc.) and significant advances in networking and interconnect solutions. In future, computing nodes with thousands of cores may be connected together to form a single transparent computing unit which hides from applications the complexity and distributed nature of these many core systems. In order to efficiently benefit from all the potential resources in such large scale many-core-enabled computing environments, resource discovery is the vital building block to maximally exploit the capabilities of all distributed heterogeneous resources through precisely recognizing and locating those resources in the system. The efficient and scalable resource discovery is challenging for such future systems where the resources and the underlying computation and communication infrastructures are highly-dynamic, highly-hierarchical and highly-heterogeneous. In this thesis, we investigate the problem of resource discovery with respect to the general requirements of arbitrary scale future many-core-enabled computing environments. The main contribution of this thesis is to propose Hybrid Adaptive Resource Discovery (HARD), a novel efficient and highly scalable resource-discovery approach which is built upon a virtual hierarchical overlay based on self-organization and self-adaptation of processing resources in the system, where the computing resources are organized into distributed hierarchies according to a proposed hierarchical multi-layered resource description model. Operationally, at each layer, it consists of a peer-to-peer architecture of modules that, by interacting with each other, provide a global view of the resource availability in a large, dynamic and heterogeneous distributed environment. The proposed resource discovery model provides the adaptability and flexibility to perform complex querying by supporting a set of significant querying features (such as multi-dimensional, range and aggregate querying) while supporting exact and partial matching, both for static and dynamic object contents. The simulation shows that HARD can be applied to arbitrary scales of dynamicity, both in terms of complexity and of scale, positioning this proposal as a proper architecture for future many-core systems. We also contributed to propose a novel resource management scheme for future systems which efficiently can utilize distributed resources in a fully decentralized fashion. Moreover, leveraging discovery components (RR-RPs) enables our resource management platform to dynamically find and allocate available resources that guarantee the QoS parameters on demand

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators
    • …
    corecore