2,270 research outputs found

    Signal Recovery in Perturbed Fourier Compressed Sensing

    Full text link
    In many applications in compressed sensing, the measurement matrix is a Fourier matrix, i.e., it measures the Fourier transform of the underlying signal at some specified `base' frequencies {ui}i=1M\{u_i\}_{i=1}^M, where MM is the number of measurements. However due to system calibration errors, the system may measure the Fourier transform at frequencies {ui+Ξ΄i}i=1M\{u_i + \delta_i\}_{i=1}^M that are different from the base frequencies and where {Ξ΄i}i=1M\{\delta_i\}_{i=1}^M are unknown. Ignoring perturbations of this nature can lead to major errors in signal recovery. In this paper, we present a simple but effective alternating minimization algorithm to recover the perturbations in the frequencies \emph{in situ} with the signal, which we assume is sparse or compressible in some known basis. In many cases, the perturbations {Ξ΄i}i=1M\{\delta_i\}_{i=1}^M can be expressed in terms of a small number of unique parameters Pβ‰ͺMP \ll M. We demonstrate that in such cases, the method leads to excellent quality results that are several times better than baseline algorithms (which are based on existing off-grid methods in the recent literature on direction of arrival (DOA) estimation, modified to suit the computational problem in this paper). Our results are also robust to noise in the measurement values. We also provide theoretical results for (1) the convergence of our algorithm, and (2) the uniqueness of its solution under some restrictions.Comment: New theortical results about uniqueness and convergence now included. More challenging experiments now include

    Structured random measurements in signal processing

    Full text link
    Compressed sensing and its extensions have recently triggered interest in randomized signal acquisition. A key finding is that random measurements provide sparse signal reconstruction guarantees for efficient and stable algorithms with a minimal number of samples. While this was first shown for (unstructured) Gaussian random measurement matrices, applications require certain structure of the measurements leading to structured random measurement matrices. Near optimal recovery guarantees for such structured measurements have been developed over the past years in a variety of contexts. This article surveys the theory in three scenarios: compressed sensing (sparse recovery), low rank matrix recovery, and phaseless estimation. The random measurement matrices to be considered include random partial Fourier matrices, partial random circulant matrices (subsampled convolutions), matrix completion, and phase estimation from magnitudes of Fourier type measurements. The article concludes with a brief discussion of the mathematical techniques for the analysis of such structured random measurements.Comment: 22 pages, 2 figure
    • …
    corecore