197,021 research outputs found

    Parallel Framework for Cooperative Processes

    Get PDF

    Optimal Communication Structures for Concurrent Computing

    Get PDF
    This research focuses on communicative solvers that run concurrently and exchange information to improve performance. This “team of solvers” enables individual algorithms to communicate information regarding their progress and intermediate solutions, and allows them to synchronize memory structures with more “successful” counterparts. The result is that fewer nodes spend computational resources on “struggling” processes. The research is focused on optimization of communication structures that maximize algorithmic efficiency using the theoretical framework of Markov chains. Existing research addressing communication between the cooperative solvers on parallel systems lacks generality: Most studies consider a limited number of communication topologies and strategies, while the evaluation of different configurations is mostly limited to empirical testing. Currently, there is no theoretical framework for tuning communication between cooperative solvers to match the underlying hardware and software. Our goal is to provide such functionality by mapping solvers’ dynamics to Markov processes, and formulating the automatic tuning of communication as a well-defined optimization problem with an objective to maximize solvers’ performance metrics

    Networked Cooperative Autonomous Munitions Digital Twin Modeling Utilizing Model Based Systems Engineering

    Get PDF
    An example of a high-complexity system is a swarm of Networked Cooperative Autonomous Munitions (NCAM) that prioritize wide area search and multiple view target confirmation. First, this research discusses methods toward building behavioral models within a Model-Based Systems Engineering (MBSE) tool. Then, this research presents the parallel modeling effort of NCAM in two environments: the MBSE model in Cameo Systems Modeler, and a physics-based model in the Advanced Framework for Simulation, Integration, and Modeling (AFSIM). Each digital model in its environment provides distinct benefits to the stakeholders of the design process, so the models must present consistent and parallel information. Thus, this research also presents automated methods to translate design information between models. Overall, the pair of models working in concert build trust with decision making authorities through understanding of the autonomous processes through systems cognition and digital scenario simulation

    Scalable Parallel Numerical Constraint Solver Using Global Load Balancing

    Full text link
    We present a scalable parallel solver for numerical constraint satisfaction problems (NCSPs). Our parallelization scheme consists of homogeneous worker solvers, each of which runs on an available core and communicates with others via the global load balancing (GLB) method. The parallel solver is implemented with X10 that provides an implementation of GLB as a library. In experiments, several NCSPs from the literature were solved and attained up to 516-fold speedup using 600 cores of the TSUBAME2.5 supercomputer.Comment: To be presented at X10'15 Worksho

    Characterization and Classification of Collaborative Tools

    Get PDF
    Traditionally, collaboration has been a means for organizations to do their work. However, the context in which they do this work is changing, especially in regards to where the work is done, how the work is organized, who does the work, and with this the characteristics of collaboration. Software development is no exception; it is itself a collaborative effort that is likewise affected by these changes. In the context of both open source software development projects and communities and organizations that develop corporate products, more and more developers need to communicate and liaise with colleagues in geographically distant places about the software product they are conceiving, designing, building, testing, debugging, deploying and maintaining. Thus, work teams face sizeable collaborative challenges, for which they have need of tools that they can use to communicate and coordinate their Work efficiently

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Theory on the mechanism of DNA renaturation: Stochastic nucleation and zipping

    Full text link
    Renaturation of complementary single strands of DNA is one of the important processes that requires better understanding in the view of molecular biology and biological physics. Here we develop a stochastic dynamical model on the DNA renaturation. According to our model there are at least three steps in the renaturation process viz. incorrect-contact formation, correct-contact formation and nucleation, and zipping. Most of the earlier two-state models combined nucleation with incorrect-contact formation step. In our model we suggest that it is considerably meaningful when we combine the nucleation with the zipping since nucleation is the initial step of zipping and the nucleated and zipping molecules are indistinguishable. Incorrect-contact formation step is a pure three-dimensional diffusion controlled collision process. Whereas nucleation involves several rounds of one-dimensional slithering dynamics of one single strand of DNA on the other complementary strand in the process of searching for the correct-contact and then initiate nucleation. Upon nucleation, the stochastic zipping follows to generate a fully renatured double stranded DNA. It seems that the square-root dependency of the overall renaturation rate constant on the length of reacting single strands originates mainly from the geometric constraints in the diffusion controlled incorrect-contact formation step. Further the inverse scaling of the renaturation rate on the viscosity of the reaction medium also originates from the incorrect-contact formation step. On the other hand the inverse scaling of the renaturation rate with the sequence complexity originates from the stochastic zipping which involves several rounds of crossing over the free-energy barrier at microscopic levels.Comment: 17 pages, 2 figure
    • 

    corecore