250 research outputs found

    Generalized Points-to Graphs: A New Abstraction of Memory in the Presence of Pointers

    Full text link
    Flow- and context-sensitive points-to analysis is difficult to scale; for top-down approaches, the problem centers on repeated analysis of the same procedure; for bottom-up approaches, the abstractions used to represent procedure summaries have not scaled while preserving precision. We propose a novel abstraction called the Generalized Points-to Graph (GPG) which views points-to relations as memory updates and generalizes them using the counts of indirection levels leaving the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure summaries in terms of memory updates and control flow between them. Their compactness is ensured by the following optimizations: strength reduction reduces the indirection levels, redundancy elimination removes redundant memory updates and minimizes control flow (without over-approximating data dependence between memory updates), and call inlining enhances the opportunities of these optimizations. We devise novel operations and data flow analyses for these optimizations. Our quest for scalability of points-to analysis leads to the following insight: The real killer of scalability in program analysis is not the amount of data but the amount of control flow that it may be subjected to in search of precision. The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing precision (i.e., by preserving data dependence without over-approximation). This is the reason why the GPGs are very small even for main procedures that contain the effect of the entire program. This allows our implementation to scale to 158kLoC for C programs

    Value-Flow-Based Demand-Driven Pointer Analysis for C and C++

    Full text link
    IEEE We present SUPA, a value-flow-based demand-driven flow- and context-sensitive pointer analysis with strong updates for C and C++ programs. SUPA enables computing points-to information via value-flow refinement, in environments with small time and memory budgets. We formulate SUPA by solving a graph-reachability problem on an inter-procedural value-flow graph representing a program's def-use chains, which are pre-computed efficiently but over-approximately. To answer a client query (a request for a variable's points-to set), SUPA reasons about the flow of values along the pre-computed def-use chains sparsely (rather than across all program points), by performing only the work necessary for the query (rather than analyzing the whole program). In particular, strong updates are performed to filter out spurious def-use chains through value-flow refinement as long as the total budget is not exhausted

    On Extracting Course-Grained Function Parallelism from C Programs

    Get PDF
    To efficiently utilize the emerging heterogeneous multi-core architecture, it is essential to exploit the inherent coarse-grained parallelism in applications. In addition to data parallelism, applications like telecommunication, multimedia, and gaming can also benefit from the exploitation of coarse-grained function parallelism. To exploit coarse-grained function parallelism, the common wisdom is to rely on programmers to explicitly express the coarse-grained data-flow between coarse-grained functions using data-flow or streaming languages. This research is set to explore another approach to exploiting coarse-grained function parallelism, that is to rely on compiler to extract coarse-grained data-flow from imperative programs. We believe imperative languages and the von Neumann programming model will still be the dominating programming languages programming model in the future. This dissertation discusses the design and implementation of a memory data-flow analysis system which extracts coarse-grained data-flow from C programs. The memory data-flow analysis system partitions a C program into a hierarchy of program regions. It then traverses the program region hierarchy from bottom up, summarizing the exposed memory access patterns for each program region, meanwhile deriving a conservative producer-consumer relations between program regions. An ensuing top-down traversal of the program region hierarchy will refine the producer-consumer relations by pruning spurious relations. We built an in-lining based prototype of the memory data-flow analysis system on top of the IMPACT compiler infrastructure. We applied the prototype to analyze the memory data-flow of several MediaBench programs. The experiment results showed that while the prototype performed reasonably well for the tested programs, the in-lining based implementation may not efficient for larger programs. Also, there is still room in improving the effectiveness of the memory data-flow analysis system. We did root cause analysis for the inaccuracy in the memory data-flow analysis results, which provided us insights on how to improve the memory data-flow analysis system in the future

    Simple and Effective Type Check Removal through Lazy Basic Block Versioning

    Get PDF
    Dynamically typed programming languages such as JavaScript and Python defer type checking to run time. In order to maximize performance, dynamic language VM implementations must attempt to eliminate redundant dynamic type checks. However, type inference analyses are often costly and involve tradeoffs between compilation time and resulting precision. This has lead to the creation of increasingly complex multi-tiered VM architectures. This paper introduces lazy basic block versioning, a simple JIT compilation technique which effectively removes redundant type checks from critical code paths. This novel approach lazily generates type-specialized versions of basic blocks on-the-fly while propagating context-dependent type information. This does not require the use of costly program analyses, is not restricted by the precision limitations of traditional type analyses and avoids the implementation complexity of speculative optimization techniques. We have implemented intraprocedural lazy basic block versioning in a JavaScript JIT compiler. This approach is compared with a classical flow-based type analysis. Lazy basic block versioning performs as well or better on all benchmarks. On average, 71% of type tests are eliminated, yielding speedups of up to 50%. We also show that our implementation generates more efficient machine code than TraceMonkey, a tracing JIT compiler for JavaScript, on several benchmarks. The combination of implementation simplicity, low algorithmic complexity and good run time performance makes basic block versioning attractive for baseline JIT compilers

    A Compiler-based Framework For Automatic Extraction Of Program Skeletons For Exascale Hardware/software Co-design

    Get PDF
    The design of high-performance computing architectures requires performance analysis of largescale parallel applications to derive various parameters concerning hardware design and software development. The process of performance analysis and benchmarking an application can be done in several ways with varying degrees of fidelity. One of the most cost-effective ways is to do a coarse-grained study of large-scale parallel applications through the use of program skeletons. The concept of a “program skeleton” that we discuss in this paper is an abstracted program that is derived from a larger program where source code that is determined to be irrelevant is removed for the purposes of the skeleton. In this work, we develop a semi-automatic approach for extracting program skeletons based on compiler program analysis. We demonstrate correctness of our skeleton extraction process by comparing details from communication traces, as well as show the performance speedup of using skeletons by running simulations in the SST/macro simulator. Extracting such a program skeleton from a large-scale parallel program requires a substantial amount of manual effort and often introduces human errors. We outline a semi-automatic approach for extracting program skeletons from large-scale parallel applications that reduces cost and eliminates errors inherent in manual approaches. Our skeleton generation approach is based on the use of the extensible and open-source ROSE compiler infrastructure that allows us to perform flow and dependency analysis on larger programs in order to determine what code can be removed from the program to generate a skeleton

    Compile-Time Analysis on Programs with Dynamic Pointer-Linked Data Structures

    Get PDF
    This paper studies static analysis on programs that create and traverse dynamic pointer-linked data structures. It introduces a new type of auxiliary structures, called {\em link graphs}, to depict the alias information of pointers and connection relationships of dynamic pointer-linked data structures. The link graphs can be used by compilers to detect side effects, to identify the patterns of traversal, and to gather the DEF-USE information of dynamic pointer-linked data structures. The results of the above compile-time analysis are essential for parallelization and optimizations on communication and synchronization overheads. Algorithms that perform compile-time analysis on side effects and DEF-USE information using link graphs will be proposed

    Optimizing Java: theory and practice

    Get PDF
    • …
    corecore