5,062 research outputs found

    Neural network-based retrieval from software reuse repositories

    Get PDF
    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline an approach to this problem based upon neural networks which avoids requiring the repository administrators to define a conceptual closeness graph for the classification vocabulary

    Using neural networks in software repositories

    Get PDF
    The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology

    Wide and Deep Neural Networks in Remote Sensing: A Review

    Get PDF
    Wide and deep neural networks in multispectral and hyperspectral image classification are discussed. Wide versus deep networks have always been a topic of intense interest. Deep networks mean large number of layers in the depth direction. Wide networks can be defined as networks growing in the vertical direction. Then, wide and deep networks are networks which have growth in both vertical and horizontal directions. In this report, several directions in order to achieve such networks are described. We first review a methodology called Parallel, Self-Organizing, Hierarchical Neural Networks (PSHNN’s) which have stages growing in the vertical direction, and each stage can be a deep network as well. In turn, each layer of a deep network can be a PSHNN. The second methodology involves making each layer of a deep network wide, and this has been discussed especially with deep residual networks. The third methodology is wide and deep residual neural networks which grow both in horizontal and vertical directions, and include residual learning principles for improving learning. The fourth methodology is wide and deep neural networks in parallel. Here wide and deep networks are two parallel branches, the wide network specializing in memorization while the deep network specializing in generalization. In leading to these methods, we also review various types of PSHNN’s, deep neural networks including convolutional neural networks, autoencoders, and residual learning. Partially due to moderate sizes of current multispectral and hyperspectral image sets, design and implementation of wide and deep neural networks hold the potential to yield most effective solutions. These conclusions are expected to be valid in other areas with similar data structures as well

    Complex Systems Science: Dreams of Universality, Reality of Interdisciplinarity

    Get PDF
    Using a large database (~ 215 000 records) of relevant articles, we empirically study the "complex systems" field and its claims to find universal principles applying to systems in general. The study of references shared by the papers allows us to obtain a global point of view on the structure of this highly interdisciplinary field. We show that its overall coherence does not arise from a universal theory but instead from computational techniques and fruitful adaptations of the idea of self-organization to specific systems. We also find that communication between different disciplines goes through specific "trading zones", ie sub-communities that create an interface around specific tools (a DNA microchip) or concepts (a network).Comment: Journal of the American Society for Information Science and Technology (2012) 10.1002/asi.2264
    • …
    corecore