7,268 research outputs found

    Parallelizing Machine Learning- Functionally: A Framework and Abstractions for Parallel Graph Processing

    Get PDF
    Implementing machine learning algorithms for large data, such as the Web graph and social networks, is challenging. Even though much research has focused on making sequential algorithms more scalable, their running times continue to be prohibitively long. Meanwhile, parallelization remains a formidable challenge for this class of problems, despite frameworks like MapReduce which hide much of the associated complexity. We present a framework for implementing parallel and distributed machine learning algorithms on large graphs, flexibly, through the use of functional programming abstractions. Our aim is a system that allows researchers and practitioners to quickly and easily implement (and experiment with) their algorithms in a parallel or distributed setting. We introduce functional combinators for the flexible composition of parallel, aggregation, and sequential steps. To the best of our knowledge, our system is the first to avoid inversion of control in a (bulk) synchronous parallel model

    A calculus of functional BSP programs with projection

    Full text link

    A Comparison of Big Data Frameworks on a Layered Dataflow Model

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models, for which only informal (and often confusing) semantics is generally provided, all share a common underlying model, namely, the Dataflow model. The Dataflow model we propose shows how various tools share the same expressiveness at different levels of abstraction. The contribution of this work is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm), thus making it easier to understand high-level data-processing applications written in such frameworks. Second, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level.Comment: 19 pages, 6 figures, 2 tables, In Proc. of the 9th Intl Symposium on High-Level Parallel Programming and Applications (HLPP), July 4-5 2016, Muenster, German

    PARALLEL SKELETONS FOR STRUCTURED COMPOSITION

    Get PDF

    PySke: Algorithmic Skeletons for Python

    Get PDF
    International audiencePySke is a library of parallel algorithmic skeletons in Python designed for list and tree data structures. Such algorithmic skeletons are high-order functions implemented in parallel. An application developed with PySke is a composition of skeletons. To ease the write of parallel programs, PySke does not follow the Single Program Multiple Data (SPMD) paradigm but offers a global view of parallel programs to users. This approach aims at writing scalable programs easily. In addition to the library, we present experiments performed on a high-performance computing cluster (distributed memory) on a set of example applications developed with PySke

    The Gremlin Graph Traversal Machine and Language

    Full text link
    Gremlin is a graph traversal machine and language designed, developed, and distributed by the Apache TinkerPop project. Gremlin, as a graph traversal machine, is composed of three interacting components: a graph GG, a traversal Ψ\Psi, and a set of traversers TT. The traversers move about the graph according to the instructions specified in the traversal, where the result of the computation is the ultimate locations of all halted traversers. A Gremlin machine can be executed over any supporting graph computing system such as an OLTP graph database and/or an OLAP graph processor. Gremlin, as a graph traversal language, is a functional language implemented in the user's native programming language and is used to define the Ψ\Psi of a Gremlin machine. This article provides a mathematical description of Gremlin and details its automaton and functional properties. These properties enable Gremlin to naturally support imperative and declarative querying, host language agnosticism, user-defined domain specific languages, an extensible compiler/optimizer, single- and multi-machine execution models, hybrid depth- and breadth-first evaluation, as well as the existence of a Universal Gremlin Machine and its respective entailments.Comment: To appear in the Proceedings of the 2015 ACM Database Programming Languages Conferenc
    • …
    corecore