551 research outputs found

    A Simulation-Based Layered Framework Framework for the Development of Collaborative Autonomous Systems

    Get PDF
    The purpose of this thesis is to introduce a simulation-based software framework that facilitates the development of collaborative autonomous systems. Significant commonalities exist in the design approaches of both collaborative and autonomous systems, mirroring the sense, plan, act paradigm, and mostly adopting layered architectures. Unfortunately, the development of such systems is intricate and requires low-level interfacing which significantly detracts from development time. Frameworks for the development of collaborative and autonomous systems have been developed but are not flexible and center on narrow ranges of applications and platforms. The proposed framework utilizes an expandable layered structure that allows developers to define a layered structure and perform isolated development on different layers. The framework provides communication capabilities and allows message definition in order to define collaborative behavior across various applications. The framework is designed to be compatible with many robotic platforms and utilizes the concept of robotic middleware in order to interface with robots; attaching the framework on different platforms only requires changing the middleware. An example Fire Brigade application that was developed in the framework is presented; highlighting the design process and utilization of framework related features. The application is simulation-based, relying on kinematic models to simulate physical actions and a virtual environment to provide access to sensor data. While the results demonstrated interesting collaborative behavior, the ease of implementation and capacity to experiment by swapping layers is particularly noteworthy. The framework retains the advantages of layered architectures and provides greater flexibility, shielding developers from intricacies and providing enough tools to make collaboration easy to perform

    An enhanced classifier system for autonomous robot navigation in dynamic environments

    Get PDF
    In many cases, a real robot application requires the navigation in dynamic environments. The navigation problem involves two main tasks: to avoid obstacles and to reach a goal. Generally, this problem could be faced considering reactions and sequences of actions. For solving the navigation problem a complete controller, including actions and reactions, is needed. Machine learning techniques has been applied to learn these controllers. Classifier Systems (CS) have proven their ability of continuos learning in these domains. However, CS have some problems in reactive systems. In this paper, a modified CS is proposed to overcome these problems. Two special mechanisms are included in the developed CS to allow the learning of both reactions and sequences of actions. The learning process has been divided in two main tasks: first, the discrimination between a predefined set of rules and second, the discovery of new rules to obtain a successful operation in dynamic environments. Different experiments have been carried out using a mini-robot Khepera to find a generalised solution. The results show the ability of the system to continuous learning and adaptation to new situations.Publicad

    Quantum Random Access Memory For Dummies

    Full text link
    Quantum Random Access Memory (QRAM) has the potential to revolutionize the area of quantum computing. QRAM uses quantum computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM.Comment: 12 pages, 10 figures, 4 tables, 65 citation

    An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    Get PDF
    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system

    A Contextual Approach To Learning Collaborative Behavior Via Observation

    Get PDF
    This dissertation describes a novel technique to creating a simulated team of agents through observation. Simulated human teamwork can be used for a number of purposes, such as expert examples, automated teammates for training purposes and realistic opponents in games and training simulation. Current teamwork simulations require the team member behaviors be programmed into the simulation, often requiring a great deal of time and effort. None are able to observe a team at work and replicate the teamwork behaviors. Machine learning techniques for learning by observation and learning by demonstration have proven successful at observing behavior of humans or other software agents and creating a behavior function for a single agent. The research described here combines current research in teamwork simulations and learning by observation to effectively train a multi-agent system in effective team behavior. The dissertation describes the background and work by others as well as a detailed description of the learning method. A prototype built to evaluate the developed approach as well as the extensive experimentation conducted is also described

    Classifier systems for situated autonomous learning

    Get PDF

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    Quantum Memory: A Missing Piece in Quantum Computing Units

    Full text link
    Memory is an indispensable component in classical computing systems. While the development of quantum computing is still in its early stages, current quantum processing units mainly function as quantum registers. Consequently, the actual role of quantum memory in future advanced quantum computing architectures remains unclear. With the rapid scaling of qubits, it is opportune to explore the potential and feasibility of quantum memory across different substrate device technologies and application scenarios. In this paper, we provide a full design stack view of quantum memory. We start from the elementary component of a quantum memory device, quantum memory cells. We provide an abstraction to a quantum memory cell and define metrics to measure the performance of physical platforms. Combined with addressing functionality, we then review two types of quantum memory devices: random access quantum memory (RAQM) and quantum random access memory (QRAM). Building on top of these devices, quantum memory units in the computing architecture, including building a quantum memory unit, quantum cache, quantum buffer, and using QRAM for the quantum input-output module, are discussed. We further propose the programming model for the quantum memory units and discuss their possible applications. By presenting this work, we aim to attract more researchers from both the Quantum Information Science (QIS) and classical memory communities to enter this emerging and exciting area.Comment: 41 pages, 11 figures, 7 table

    Data centers with quantum random access memory and quantum networks

    Full text link
    In this paper, we propose the Quantum Data Center (QDC), an architecture combining Quantum Random Access Memory (QRAM) and quantum networks. We give a precise definition of QDC, and discuss its possible realizations and extensions. We discuss applications of QDC in quantum computation, quantum communication, and quantum sensing, with a primary focus on QDC for TT-gate resources, QDC for multi-party private quantum communication, and QDC for distributed sensing through data compression. We show that QDC will provide efficient, private, and fast services as a future version of data centers.Comment: 23 pages, many figure
    • …
    corecore