26,402 research outputs found

    Multi-Segment Parallel Continuum Manipulator

    Get PDF
    Continuum manipulators are a type of robot arm that resemble biological tentacles and trunks. They have a flexible and compliant structure, which may allow them to out-perform rigid-link designs in cluttered workspaces or in environments that contain people. While most continuum manipulators are required to have constant curvature along the length of each segment, a new design known as a parallel continuum manipulator removes this restriction and inherits some properties of parallel rigid-link robots such as greater stability, precision, strength, and maneuverability. Until now, only single segment forms of these manipulators have been created. This project expands this manipulator design concept by creating the first multi-segment parallel continuum manipulator

    Regrasp Planning using 10,000s of Grasps

    Full text link
    This paper develops intelligent algorithms for robots to reorient objects. Given the initial and goal poses of an object, the proposed algorithms plan a sequence of robot poses and grasp configurations that reorient the object from its initial pose to the goal. While the topic has been studied extensively in previous work, this paper makes important improvements in grasp planning by using over-segmented meshes, in data storage by using relational database, and in regrasp planning by mixing real-world roadmaps. The improvements enable robots to do robust regrasp planning using 10,000s of grasps and their relationships in interactive time. The proposed algorithms are validated using various objects and robots

    A Certified-Complete Bimanual Manipulation Planner

    Full text link
    Planning motions for two robot arms to move an object collaboratively is a difficult problem, mainly because of the closed-chain constraint, which arises whenever two robot hands simultaneously grasp a single rigid object. In this paper, we propose a manipulation planning algorithm to bring an object from an initial stable placement (position and orientation of the object on the support surface) towards a goal stable placement. The key specificity of our algorithm is that it is certified-complete: for a given object and a given environment, we provide a certificate that the algorithm will find a solution to any bimanual manipulation query in that environment whenever one exists. Moreover, the certificate is constructive: at run-time, it can be used to quickly find a solution to a given query. The algorithm is tested in software and hardware on a number of large pieces of furniture.Comment: 12 pages, 7 figures, 1 tabl

    A new meta-module for efficient reconfiguration of hinged-units modular robots

    Get PDF
    We present a robust and compact meta-module for edge-hinged modular robot units such as M-TRAN, SuperBot, SMORES, UBot, PolyBot and CKBot, as well as for central-point-hinged ones such as Molecubes and Roombots. Thanks to the rotational degrees of freedom of these units, the novel meta-module is able to expand and contract, as to double/halve its length in each dimension. Moreover, for a large class of edge-hinged robots the proposed meta-module also performs the scrunch/relax and transfer operations required by any tunneling-based reconfiguration strategy, such as those designed for Crystalline and Telecube robots. These results make it possible to apply efficient geometric reconfiguration algorithms to this type of robots. We prove the size of this new meta-module to be optimal. Its robustness and performance substantially improve over previous results.Peer ReviewedPostprint (author's final draft

    A Bio-Inspired Tensegrity Manipulator with Multi-DOF, Structurally Compliant Joints

    Full text link
    Most traditional robotic mechanisms feature inelastic joints that are unable to robustly handle large deformations and off-axis moments. As a result, the applied loads are transferred rigidly throughout the entire structure. The disadvantage of this approach is that the exerted leverage is magnified at each subsequent joint possibly damaging the mechanism. In this paper, we present two lightweight, elastic, bio-inspired tensegrity robotics arms which mitigate this danger while improving their mechanism's functionality. Our solutions feature modular tensegrity structures that function similarly to the human elbow and the human shoulder when connected. Like their biological counterparts, the proposed robotic joints are flexible and comply with unanticipated forces. Both proposed structures have multiple passive degrees of freedom and four active degrees of freedom (two from the shoulder and two from the elbow). The structural advantages demonstrated by the joints in these manipulators illustrate a solution to the fundamental issue of elegantly handling off-axis compliance.Comment: IROS 201

    Optimal dimensional synthesis of force feedback lower arm exoskeletons

    Get PDF
    This paper presents multi-criteria design optimization of parallel mechanism based force feedback exoskeletons for human forearm and wrist. The optimized devices are aimed to be employed as a high fidelity haptic interfaces. Multiple design objectives are discussed and classified for the devices and the optimization problem to study the trade-offs between these criteria is formulated. Dimensional syntheses are performed for optimal global kinematic and dynamic performance, utilizing a Pareto front based framework, for two spherical parallel mechanisms that satisfy the ergonomic necessities of a human forearm and wrist. Two optimized mechanisms are compared and discussed in the light of multiple design criteria. Finally, kinematic structure and dimensions of an optimal exoskeleton are decided
    corecore