10,275 research outputs found

    Meta-ontology fault detection

    Get PDF
    Ontology engineering is the field, within knowledge representation, concerned with using logic-based formalisms to represent knowledge, typically moderately sized knowledge bases called ontologies. How to best develop, use and maintain these ontologies has produced relatively large bodies of both formal, theoretical and methodological research. One subfield of ontology engineering is ontology debugging, and is concerned with preventing, detecting and repairing errors (or more generally pitfalls, bad practices or faults) in ontologies. Due to the logical nature of ontologies and, in particular, entailment, these faults are often both hard to prevent and detect and have far reaching consequences. This makes ontology debugging one of the principal challenges to more widespread adoption of ontologies in applications. Moreover, another important subfield in ontology engineering is that of ontology alignment: combining multiple ontologies to produce more powerful results than the simple sum of the parts. Ontology alignment further increases the issues, difficulties and challenges of ontology debugging by introducing, propagating and exacerbating faults in ontologies. A relevant aspect of the field of ontology debugging is that, due to the challenges and difficulties, research within it is usually notably constrained in its scope, focusing on particular aspects of the problem or on the application to only certain subdomains or under specific methodologies. Similarly, the approaches are often ad hoc and only related to other approaches at a conceptual level. There are no well established and widely used formalisms, definitions or benchmarks that form a foundation of the field of ontology debugging. In this thesis, I tackle the problem of ontology debugging from a more abstract than usual point of view, looking at existing literature in the field and attempting to extract common ideas and specially focussing on formulating them in a common language and under a common approach. Meta-ontology fault detection is a framework for detecting faults in ontologies that utilizes semantic fault patterns to express schematic entailments that typically indicate faults in a systematic way. The formalism that I developed to represent these patterns is called existential second-order query logic (abbreviated as ESQ logic). I further reformulated a large proportion of the ideas present in some of the existing research pieces into this framework and as patterns in ESQ logic, providing a pattern catalogue. Most of the work during my PhD has been spent in designing and implementing an algorithm to effectively automatically detect arbitrary ESQ patterns in arbitrary ontologies. The result is what we call minimal commitment resolution for ESQ logic, an extension of first-order resolution, drawing on important ideas from higher-order unification and implementing a novel approach to unification problems using dependency graphs. I have proven important theoretical properties about this algorithm such as its soundness, its termination (in a certain sense and under certain conditions) and its fairness or completeness in the enumeration of infinite spaces of solutions. Moreover, I have produced an implementation of minimal commitment resolution for ESQ logic in Haskell that has passed all unit tests and produces non-trivial results on small examples. However, attempts to apply this algorithm to examples of a more realistic size have proven unsuccessful, with computation times that exceed our tolerance levels. In this thesis, I have provided both details of the challenges faced in this regard, as well as other successful forms of qualitative evaluation of the meta-ontology fault detection approach, and discussions about both what I believe are the main causes of the computational feasibility problems, ideas on how to overcome them, and also ideas on other directions of future work that could use the results in the thesis to contribute to the production of foundational formalisms, ideas and approaches to ontology debugging that can properly combine existing constrained research. It is unclear to me whether minimal commitment resolution for ESQ logic can, in its current shape, be implemented efficiently or not, but I believe that, at the very least, the theoretical and conceptual underpinnings that I have presented in this thesis will be useful to produce more foundational results in the field

    Modified Theories of Gravity and Cosmological Applications

    Get PDF
    This reprint focuses on recent aspects of gravitational theory and cosmology. It contains subjects of particular interest for modified gravity theories and applications to cosmology, special attention is given to Einstein–Gauss–Bonnet, f(R)-gravity, anisotropic inflation, extra dimension theories of gravity, black holes, dark energy, Palatini gravity, anisotropic spacetime, Einstein–Finsler gravity, off-diagonal cosmological solutions, Hawking-temperature and scalar-tensor-vector theories

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Exploring QCD matter in extreme conditions with Machine Learning

    Full text link
    In recent years, machine learning has emerged as a powerful computational tool and novel problem-solving perspective for physics, offering new avenues for studying strongly interacting QCD matter properties under extreme conditions. This review article aims to provide an overview of the current state of this intersection of fields, focusing on the application of machine learning to theoretical studies in high energy nuclear physics. It covers diverse aspects, including heavy ion collisions, lattice field theory, and neutron stars, and discuss how machine learning can be used to explore and facilitate the physics goals of understanding QCD matter. The review also provides a commonality overview from a methodology perspective, from data-driven perspective to physics-driven perspective. We conclude by discussing the challenges and future prospects of machine learning applications in high energy nuclear physics, also underscoring the importance of incorporating physics priors into the purely data-driven learning toolbox. This review highlights the critical role of machine learning as a valuable computational paradigm for advancing physics exploration in high energy nuclear physics.Comment: 146 pages,53 figure

    Resource Management in Mobile Edge Computing for Compute-intensive Application

    Full text link
    With current and future mobile applications (e.g., healthcare, connected vehicles, and smart grids) becoming increasingly compute-intensive for many mission-critical use cases, the energy and computing capacities of embedded mobile devices are proving to be insufficient to handle all in-device computation. To address the energy and computing shortages of mobile devices, mobile edge computing (MEC) has emerged as a major distributed computing paradigm. Compared to traditional cloud-based computing, MEC integrates network control, distributed computing, and storage to customizable, fast, reliable, and secure edge services that are closer to the user and data sites. However, the diversity of applications and a variety of user specified requirements (viz., latency, scalability, availability, and reliability) add additional complications to the system and application optimization problems in terms of resource management. In this thesis dissertation, we aim to develop customized and intelligent placement and provisioning strategies that are needed to handle edge resource management problems for different challenging use cases: i) Firstly, we propose an energy-efficient framework to address the resource allocation problem of generic compute-intensive applications, such as Directed Acyclic Graph (DAG) based applications. We design partial task offloading and server selection strategies with the purpose of minimizing the transmission cost. Our experiment and simulation results indicate that partial task offloading provides considerable energy savings, especially for resource-constrained edge systems. ii) Secondly, to address the dynamism edge environments, we propose solutions that integrate Dynamic Spectrum Access (DSA) and Cooperative Spectrum Sensing (CSS) with fine-grained task offloading schemes. Similarly, we show the high efficiency of the proposed strategy in capturing dynamic channel states and enforcing intelligent channel sensing and task offloading decisions. iii) Finally, application-specific long-term optimization frameworks are proposed for two representative applications: a) multi-view 3D reconstruction and b) Deep Neural Network (DNN) inference. Here, in order to eliminate redundant and unnecessary reconstruction processing, we introduce key-frame and resolution selection incorporated with task assignment, quality prediction, and pipeline parallelization. The proposed framework is able to provide a flexible balance between reconstruction time and quality satisfaction. As for DNN inference, a joint resource allocation and DNN partitioning framework is proposed. The outcomes of this research seek to benefit the future distributed computing, smart applications, and data-intensive science communities to build effective, efficient, and robust MEC environments

    Multiscale structural optimisation with concurrent coupling between scales

    Get PDF
    A robust three-dimensional multiscale topology optimisation framework with concurrent coupling between scales is presented. Concurrent coupling ensures that only the microscale data required to evaluate the macroscale model during each iteration of optimisation is collected and results in considerable computational savings. This represents the principal novelty of the framework and permits a previously intractable number of design variables to be used in the parametrisation of the microscale geometry, which in turn enables accessibility to a greater range of mechanical point properties during optimisation. Additionally, the microscale data collected during optimisation is stored in a re-usable database, further reducing the computational expense of subsequent iterations or entirely new optimisation problems. Application of this methodology enables structures with precise functionally-graded mechanical properties over two-scales to be derived, which satisfy one or multiple functional objectives. For all applications of the framework presented within this thesis, only a small fraction of the microstructure database is required to derive the optimised multiscale solutions, which demonstrates a significant reduction in the computational expense of optimisation in comparison to contemporary sequential frameworks. The derivation and integration of novel additive manufacturing constraints for open-walled microstructures within the concurrently coupled multiscale topology optimisation framework is also presented. Problematic fabrication features are discouraged through the application of an augmented projection filter and two relaxed binary integral constraints, which prohibit the formation of unsupported members, isolated assemblies of overhanging members and slender members during optimisation. Through the application of these constraints, it is possible to derive self-supporting, hierarchical structures with varying topology, suitable for fabrication through additive manufacturing processes.Open Acces

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Sustainability Analysis and Environmental Decision-Making Using Simulation, Optimization, and Computational Analytics

    Get PDF
    Effective environmental decision-making is often challenging and complex, where final solutions frequently possess inherently subjective political and socio-economic components. Consequently, complex sustainability applications in the “real world” frequently employ computational decision-making approaches to construct solutions to problems containing numerous quantitative dimensions and considerable sources of uncertainty. This volume includes a number of such applied computational analytics papers that either create new decision-making methods or provide innovative implementations of existing methods for addressing a wide spectrum of sustainability applications, broadly defined. The disparate contributions all emphasize novel approaches of computational analytics as applied to environmental decision-making and sustainability analysis – be this on the side of optimization, simulation, modelling, computational solution procedures, visual analytics, and/or information technologies

    Challenges and New Trends in Power Electronic Devices Reliability

    Get PDF
    The rapid increase in new power electronic devices and converters for electric transportation and smart grid technologies requires a deepanalysis of their component performances, considering all of the different environmental scenarios, overload conditions, and high stressoperations. Therefore, evaluation of the reliability and availability of these devices becomes fundamental both from technical and economicalpoints of view. The rapid evolution of technologies and the high reliability level offered by these components have shown that estimating reliability through the traditional approaches is difficult, as historical failure data and/or past observed scenarios demonstrate. With the aim topropose new approaches for the evaluation of reliability, in this book, eleven innovative contributions are collected, all focusedon the reliability assessment of power electronic devices and related components
    • 

    corecore