245 research outputs found

    Dynamic Systolization for Developing Multiprocessor Supercomputers

    Get PDF
    A dynamic network approach is introduced for developing reconfigurable, systolic arrays or wavefront processors; This allows one to design very powerful and flexible processors to be used in a general-purpose, reconfigurable, and fault-tolerant, multiprocessor computer system. The concepts of macro-dataflow and multitasking can be integrated to handle variable-resolution granularities in computationally intensive algorithms. A multiprocessor architecture, Remps, is proposed based on these design methodologies. The Remps architecture is generalized from the Cedar, HEP, Cray X- MP, Trac, NYU ultracomputer, S-l, Pumps, Chip, and SAM projects. Our goal is to provide a multiprocessor research model for developing design methodologies, multiprocessing and multitasking supports, dynamic systolic/wavefront array processors, interconnection networks, reconfiguration techniques, and performance analysis tools. These system design and operational techniques should be useful to those who are developing or evaluating multiprocessor supercomputers

    Transferring ecosystem simulation codes to supercomputers

    Get PDF
    Many ecosystem simulation computer codes have been developed in the last twenty-five years. This development took place initially on main-frame computers, then mini-computers, and more recently, on micro-computers and workstations. Supercomputing platforms (both parallel and distributed systems) have been largely unused, however, because of the perceived difficulty in accessing and using the machines. Also, significant differences in the system architectures of sequential, scalar computers and parallel and/or vector supercomputers must be considered. We have transferred a grassland simulation model (developed on a VAX) to a Cray Y-MP/C90. We describe porting the model to the Cray and the changes we made to exploit the parallelism in the application and improve code execution. The Cray executed the model 30 times faster than the VAX and 10 times faster than a Unix workstation. We achieved an additional speedup of 30 percent by using the compiler's vectoring and 'in-line' capabilities. The code runs at only about 5 percent of the Cray's peak speed because it ineffectively uses the vector and parallel processing capabilities of the Cray. We expect that by restructuring the code, it could execute an additional six to ten times faster

    Network control for a multi-user transputer-based system.

    Get PDF
    A dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in EngineeringThe MC2/64 system is a configureable multi-user transputer- based system which was designed using a modular approach. The MC2/64 consists of MC2 Clusters which are connected using a modified Clos network. The MC2 Clusters were designed and realised as completely configurable modules using and extending an algorithm based on Eulerian cycles through a requested graph. This dissertation discusses the configuration algorithm and the extensions made to the algorithm for the MC2 Clusters. The total MC2/64 system is not completely configurable as a MC2 Cluster releases only a limited number of links for inter-cluster connections. This dissertation analyses the configurability of MC2/64, but also presents algorithms which enhance the usability of the system from the user's point of view. The design and the implementation of the network control software are also submitted as topics in this dissertation. The network control software must allow multiple users to use the system, but without them influencing each other's transputer domains. This dissertation therefore seeks to give an overview of network control problems and the solutions implemented in current MC2/64 systems. The results of the research done for this dissertation will hopefully aid in the design of future MC2 systems which will provide South Africa with much needed, low cost, high performance computing power.Andrew Chakane 201

    Vector processing-aware advanced clock-gating techniques for low-power fused multiply-add

    Get PDF
    The need for power efficiency is driving a rethink of design decisions in processor architectures. While vector processors succeeded in the high-performance market in the past, they need a retailoring for the mobile market that they are entering now. Floating-point (FP) fused multiply-add (FMA), being a functional unit with high power consumption, deserves special attention. Although clock gating is a well-known method to reduce switching power in synchronous designs, there are unexplored opportunities for its application to vector processors, especially when considering active operating mode. In this research, we comprehensively identify, propose, and evaluate the most suitable clock-gating techniques for vector FMA units (VFUs). These techniques ensure power savings without jeopardizing the timing. We evaluate the proposed techniques using both synthetic and “real-world” application-based benchmarking. Using vector masking and vector multilane-aware clock gating, we report power reductions of up to 52%, assuming active VFU operating at the peak performance. Among other findings, we observe that vector instruction-based clock-gating techniques achieve power savings for all vector FP instructions. Finally, when evaluating all techniques together, using “real-world” benchmarking, the power reductions are up to 80%. Additionally, in accordance with processor design trends, we perform this research in a fully parameterizable and automated fashion.The research leading to these results has received funding from the RoMoL ERC Advanced Grant GA 321253 and is supported in part by the European Union (FEDER funds) under contract TTIN2015-65316-P. The work of I. Ratkovic was supported by a FPU research grant from the Spanish MECD.Peer ReviewedPostprint (author's final draft

    Local time stepping on high performance computing architectures: mitigating CFL bottlenecks for large-scale wave propagation

    Get PDF
    Modeling problems that require the simulation of hyperbolic PDEs (wave equations) on large heterogeneous domains have potentially many bottlenecks. We attack this problem through two techniques: the massively parallel capabilities of graphics processors (GPUs) and local time stepping (LTS) to mitigate any CFL bottlenecks on a multiscale mesh. Many modern supercomputing centers are installing GPUs due to their high performance, and extending existing seismic wave-propagation software to use GPUs is vitally important to give application scientists the highest possible performance. In addition to this architectural optimization, LTS schemes avoid performance losses in meshes with localized areas of refinement. Coupled with the GPU performance optimizations, the derivation and implementation of an Newmark LTS scheme enables next-generation performance for real-world applications. Included in this implementation is work addressing the load-balancing problem inherent to multi-level LTS schemes, enabling scalability to hundreds and thousands of CPUs and GPUs. These GPU, LTS, and scaling optimizations accelerate the performance of existing applications by a factor of 30 or more, and enable future modeling scenarios previously made unfeasible by the cost of standard explicit time-stepping schemes

    High performance computing and communications: FY 1995 implementation plan

    Full text link

    High performance computing and communications: Advancing the frontiers of information technology

    Full text link

    Research summary, January 1989 - June 1990

    Get PDF
    The Research Institute for Advanced Computer Science (RIACS) was established at NASA ARC in June of 1983. RIACS is privately operated by the Universities Space Research Association (USRA), a consortium of 62 universities with graduate programs in the aerospace sciences, under a Cooperative Agreement with NASA. RIACS serves as the representative of the USRA universities at ARC. This document reports our activities and accomplishments for the period 1 Jan. 1989 - 30 Jun. 1990. The following topics are covered: learning systems, networked systems, and parallel systems

    The Role of Computers in Research and Development at Langley Research Center

    Get PDF
    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics
    corecore